mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-12 09:23:12 +08:00
Fix use of nesting types in SparseTranspose and split the big SparseProduct.h file
This commit is contained in:
parent
28e64b0da3
commit
1927b4dff5
@ -45,6 +45,8 @@ struct Sparse {};
|
|||||||
#include "src/Sparse/SparseRedux.h"
|
#include "src/Sparse/SparseRedux.h"
|
||||||
#include "src/Sparse/SparseFuzzy.h"
|
#include "src/Sparse/SparseFuzzy.h"
|
||||||
#include "src/Sparse/SparseProduct.h"
|
#include "src/Sparse/SparseProduct.h"
|
||||||
|
#include "src/Sparse/SparseSparseProduct.h"
|
||||||
|
#include "src/Sparse/SparseDenseProduct.h"
|
||||||
#include "src/Sparse/SparseDiagonalProduct.h"
|
#include "src/Sparse/SparseDiagonalProduct.h"
|
||||||
#include "src/Sparse/SparseTriangularView.h"
|
#include "src/Sparse/SparseTriangularView.h"
|
||||||
#include "src/Sparse/SparseSelfAdjointView.h"
|
#include "src/Sparse/SparseSelfAdjointView.h"
|
||||||
|
111
Eigen/src/Sparse/SparseDenseProduct.h
Normal file
111
Eigen/src/Sparse/SparseDenseProduct.h
Normal file
@ -0,0 +1,111 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#ifndef EIGEN_SPARSEDENSEPRODUCT_H
|
||||||
|
#define EIGEN_SPARSEDENSEPRODUCT_H
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs>
|
||||||
|
struct ei_traits<SparseTimeDenseProduct<Lhs,Rhs> >
|
||||||
|
: ei_traits<ProductBase<SparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs> >
|
||||||
|
{
|
||||||
|
typedef Dense StorageKind;
|
||||||
|
typedef MatrixXpr XprKind;
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs>
|
||||||
|
class SparseTimeDenseProduct
|
||||||
|
: public ProductBase<SparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs>
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
EIGEN_PRODUCT_PUBLIC_INTERFACE(SparseTimeDenseProduct)
|
||||||
|
|
||||||
|
SparseTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
|
||||||
|
{}
|
||||||
|
|
||||||
|
template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
|
||||||
|
{
|
||||||
|
typedef typename ei_cleantype<Lhs>::type _Lhs;
|
||||||
|
typedef typename ei_cleantype<Rhs>::type _Rhs;
|
||||||
|
typedef typename _Lhs::InnerIterator LhsInnerIterator;
|
||||||
|
enum { LhsIsRowMajor = (_Lhs::Flags&RowMajorBit)==RowMajorBit };
|
||||||
|
for(Index j=0; j<m_lhs.outerSize(); ++j)
|
||||||
|
{
|
||||||
|
typename Rhs::Scalar rhs_j = alpha * m_rhs.coeff(j,0);
|
||||||
|
Block<Dest,1,Dest::ColsAtCompileTime> dest_j(dest.row(LhsIsRowMajor ? j : 0));
|
||||||
|
for(LhsInnerIterator it(m_lhs,j); it ;++it)
|
||||||
|
{
|
||||||
|
if(LhsIsRowMajor) dest_j += (alpha*it.value()) * m_rhs.row(it.index());
|
||||||
|
else if(Rhs::ColsAtCompileTime==1) dest.coeffRef(it.index()) += it.value() * rhs_j;
|
||||||
|
else dest.row(it.index()) += (alpha*it.value()) * m_rhs.row(j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
SparseTimeDenseProduct& operator=(const SparseTimeDenseProduct&);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// dense = dense * sparse
|
||||||
|
template<typename Lhs, typename Rhs>
|
||||||
|
struct ei_traits<DenseTimeSparseProduct<Lhs,Rhs> >
|
||||||
|
: ei_traits<ProductBase<DenseTimeSparseProduct<Lhs,Rhs>, Lhs, Rhs> >
|
||||||
|
{
|
||||||
|
typedef Dense StorageKind;
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs>
|
||||||
|
class DenseTimeSparseProduct
|
||||||
|
: public ProductBase<DenseTimeSparseProduct<Lhs,Rhs>, Lhs, Rhs>
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
EIGEN_PRODUCT_PUBLIC_INTERFACE(DenseTimeSparseProduct)
|
||||||
|
|
||||||
|
DenseTimeSparseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
|
||||||
|
{}
|
||||||
|
|
||||||
|
template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
|
||||||
|
{
|
||||||
|
typedef typename ei_cleantype<Rhs>::type _Rhs;
|
||||||
|
typedef typename _Rhs::InnerIterator RhsInnerIterator;
|
||||||
|
enum { RhsIsRowMajor = (_Rhs::Flags&RowMajorBit)==RowMajorBit };
|
||||||
|
for(Index j=0; j<m_rhs.outerSize(); ++j)
|
||||||
|
for(RhsInnerIterator i(m_rhs,j); i; ++i)
|
||||||
|
dest.col(RhsIsRowMajor ? i.index() : j) += (alpha*i.value()) * m_lhs.col(RhsIsRowMajor ? j : i.index());
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
DenseTimeSparseProduct& operator=(const DenseTimeSparseProduct&);
|
||||||
|
};
|
||||||
|
|
||||||
|
// sparse * dense
|
||||||
|
template<typename Derived>
|
||||||
|
template<typename OtherDerived>
|
||||||
|
inline const SparseTimeDenseProduct<Derived,OtherDerived>
|
||||||
|
SparseMatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
|
||||||
|
{
|
||||||
|
return SparseTimeDenseProduct<Derived,OtherDerived>(derived(), other.derived());
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // EIGEN_SPARSEDENSEPRODUCT_H
|
@ -429,7 +429,7 @@ class SparseMatrix
|
|||||||
|
|
||||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||||
template<typename Lhs, typename Rhs>
|
template<typename Lhs, typename Rhs>
|
||||||
inline SparseMatrix& operator=(const SparseProduct<Lhs,Rhs>& product)
|
inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
|
||||||
{
|
{
|
||||||
return Base::operator=(product);
|
return Base::operator=(product);
|
||||||
}
|
}
|
||||||
|
@ -252,7 +252,7 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
|
|||||||
}
|
}
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs>
|
template<typename Lhs, typename Rhs>
|
||||||
inline Derived& operator=(const SparseProduct<Lhs,Rhs>& product);
|
inline Derived& operator=(const SparseSparseProduct<Lhs,Rhs>& product);
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs>
|
template<typename Lhs, typename Rhs>
|
||||||
inline void _experimentalNewProduct(const Lhs& lhs, const Rhs& rhs);
|
inline void _experimentalNewProduct(const Lhs& lhs, const Rhs& rhs);
|
||||||
@ -348,7 +348,7 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
|
|||||||
|
|
||||||
// sparse * sparse
|
// sparse * sparse
|
||||||
template<typename OtherDerived>
|
template<typename OtherDerived>
|
||||||
const typename SparseProductReturnType<Derived,OtherDerived>::Type
|
const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
|
||||||
operator*(const SparseMatrixBase<OtherDerived> &other) const;
|
operator*(const SparseMatrixBase<OtherDerived> &other) const;
|
||||||
|
|
||||||
// sparse * diagonal
|
// sparse * diagonal
|
||||||
|
@ -26,18 +26,16 @@
|
|||||||
#define EIGEN_SPARSEPRODUCT_H
|
#define EIGEN_SPARSEPRODUCT_H
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs>
|
template<typename Lhs, typename Rhs>
|
||||||
struct SparseProductReturnType
|
struct SparseSparseProductReturnType
|
||||||
{
|
{
|
||||||
typedef typename ei_traits<Lhs>::Scalar Scalar;
|
typedef typename ei_traits<Lhs>::Scalar Scalar;
|
||||||
enum {
|
enum {
|
||||||
LhsRowMajor = ei_traits<Lhs>::Flags & RowMajorBit,
|
LhsRowMajor = ei_traits<Lhs>::Flags & RowMajorBit,
|
||||||
RhsRowMajor = ei_traits<Rhs>::Flags & RowMajorBit,
|
RhsRowMajor = ei_traits<Rhs>::Flags & RowMajorBit,
|
||||||
TransposeRhs = /*false,*/ (!LhsRowMajor) && RhsRowMajor,
|
TransposeRhs = (!LhsRowMajor) && RhsRowMajor,
|
||||||
TransposeLhs = /*false*/ LhsRowMajor && (!RhsRowMajor)
|
TransposeLhs = LhsRowMajor && (!RhsRowMajor)
|
||||||
};
|
};
|
||||||
|
|
||||||
// FIXME if we transpose let's evaluate to a LinkedVectorMatrix since it is the
|
|
||||||
// type of the temporary to perform the transpose op
|
|
||||||
typedef typename ei_meta_if<TransposeLhs,
|
typedef typename ei_meta_if<TransposeLhs,
|
||||||
SparseMatrix<Scalar,0>,
|
SparseMatrix<Scalar,0>,
|
||||||
const typename ei_nested<Lhs,Rhs::RowsAtCompileTime>::type>::ret LhsNested;
|
const typename ei_nested<Lhs,Rhs::RowsAtCompileTime>::type>::ret LhsNested;
|
||||||
@ -46,11 +44,11 @@ struct SparseProductReturnType
|
|||||||
SparseMatrix<Scalar,0>,
|
SparseMatrix<Scalar,0>,
|
||||||
const typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type>::ret RhsNested;
|
const typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type>::ret RhsNested;
|
||||||
|
|
||||||
typedef SparseProduct<LhsNested, RhsNested> Type;
|
typedef SparseSparseProduct<LhsNested, RhsNested> Type;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename LhsNested, typename RhsNested>
|
template<typename LhsNested, typename RhsNested>
|
||||||
struct ei_traits<SparseProduct<LhsNested, RhsNested> >
|
struct ei_traits<SparseSparseProduct<LhsNested, RhsNested> >
|
||||||
{
|
{
|
||||||
typedef MatrixXpr XprKind;
|
typedef MatrixXpr XprKind;
|
||||||
// clean the nested types:
|
// clean the nested types:
|
||||||
@ -68,11 +66,11 @@ struct ei_traits<SparseProduct<LhsNested, RhsNested> >
|
|||||||
|
|
||||||
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
|
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
|
||||||
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
|
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
|
||||||
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
|
|
||||||
|
|
||||||
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
|
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
|
||||||
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
|
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
|
||||||
|
|
||||||
|
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
|
||||||
|
|
||||||
EvalToRowMajor = (RhsFlags & LhsFlags & RowMajorBit),
|
EvalToRowMajor = (RhsFlags & LhsFlags & RowMajorBit),
|
||||||
|
|
||||||
RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
|
RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
|
||||||
@ -85,28 +83,26 @@ struct ei_traits<SparseProduct<LhsNested, RhsNested> >
|
|||||||
};
|
};
|
||||||
|
|
||||||
typedef Sparse StorageKind;
|
typedef Sparse StorageKind;
|
||||||
|
|
||||||
typedef SparseMatrixBase<SparseProduct<LhsNested, RhsNested> > Base;
|
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename LhsNested, typename RhsNested>
|
template<typename LhsNested, typename RhsNested>
|
||||||
class SparseProduct : ei_no_assignment_operator,
|
class SparseSparseProduct : ei_no_assignment_operator,
|
||||||
public ei_traits<SparseProduct<LhsNested, RhsNested> >::Base
|
public SparseMatrixBase<SparseSparseProduct<LhsNested, RhsNested> >
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
|
|
||||||
typedef typename ei_traits<SparseProduct<LhsNested, RhsNested> >::Base Base;
|
typedef SparseMatrixBase<SparseSparseProduct> Base;
|
||||||
EIGEN_DENSE_PUBLIC_INTERFACE(SparseProduct)
|
EIGEN_DENSE_PUBLIC_INTERFACE(SparseSparseProduct)
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
|
||||||
typedef typename ei_traits<SparseProduct>::_LhsNested _LhsNested;
|
typedef typename ei_traits<SparseSparseProduct>::_LhsNested _LhsNested;
|
||||||
typedef typename ei_traits<SparseProduct>::_RhsNested _RhsNested;
|
typedef typename ei_traits<SparseSparseProduct>::_RhsNested _RhsNested;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs>
|
template<typename Lhs, typename Rhs>
|
||||||
EIGEN_STRONG_INLINE SparseProduct(const Lhs& lhs, const Rhs& rhs)
|
EIGEN_STRONG_INLINE SparseSparseProduct(const Lhs& lhs, const Rhs& rhs)
|
||||||
: m_lhs(lhs), m_rhs(rhs)
|
: m_lhs(lhs), m_rhs(rhs)
|
||||||
{
|
{
|
||||||
ei_assert(lhs.cols() == rhs.rows());
|
ei_assert(lhs.cols() == rhs.rows());
|
||||||
@ -139,451 +135,4 @@ class SparseProduct : ei_no_assignment_operator,
|
|||||||
RhsNested m_rhs;
|
RhsNested m_rhs;
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
static void ei_sparse_product_impl2(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
typedef typename ei_cleantype<Lhs>::type::Scalar Scalar;
|
|
||||||
typedef typename ei_cleantype<Lhs>::type::Index Index;
|
|
||||||
|
|
||||||
// make sure to call innerSize/outerSize since we fake the storage order.
|
|
||||||
Index rows = lhs.innerSize();
|
|
||||||
Index cols = rhs.outerSize();
|
|
||||||
ei_assert(lhs.outerSize() == rhs.innerSize());
|
|
||||||
|
|
||||||
std::vector<bool> mask(rows,false);
|
|
||||||
Matrix<Scalar,Dynamic,1> values(rows);
|
|
||||||
Matrix<Index,Dynamic,1> indices(rows);
|
|
||||||
|
|
||||||
// estimate the number of non zero entries
|
|
||||||
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
|
|
||||||
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
|
|
||||||
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
|
|
||||||
|
|
||||||
// int t200 = rows/(log2(200)*1.39);
|
|
||||||
// int t = (rows*100)/139;
|
|
||||||
|
|
||||||
res.resize(rows, cols);
|
|
||||||
res.reserve(Index(ratioRes*rows*cols));
|
|
||||||
// we compute each column of the result, one after the other
|
|
||||||
for (Index j=0; j<cols; ++j)
|
|
||||||
{
|
|
||||||
|
|
||||||
res.startVec(j);
|
|
||||||
Index nnz = 0;
|
|
||||||
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
|
||||||
{
|
|
||||||
Scalar y = rhsIt.value();
|
|
||||||
Index k = rhsIt.index();
|
|
||||||
for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
|
|
||||||
{
|
|
||||||
Index i = lhsIt.index();
|
|
||||||
Scalar x = lhsIt.value();
|
|
||||||
if(!mask[i])
|
|
||||||
{
|
|
||||||
mask[i] = true;
|
|
||||||
// values[i] = x * y;
|
|
||||||
// indices[nnz] = i;
|
|
||||||
++nnz;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
values[i] += x * y;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// FIXME reserve nnz non zeros
|
|
||||||
// FIXME implement fast sort algorithms for very small nnz
|
|
||||||
// if the result is sparse enough => use a quick sort
|
|
||||||
// otherwise => loop through the entire vector
|
|
||||||
// In order to avoid to perform an expensive log2 when the
|
|
||||||
// result is clearly very sparse we use a linear bound up to 200.
|
|
||||||
// if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
|
|
||||||
// {
|
|
||||||
// if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
|
|
||||||
// for(int k=0; k<nnz; ++k)
|
|
||||||
// {
|
|
||||||
// int i = indices[k];
|
|
||||||
// res.insertBackNoCheck(j,i) = values[i];
|
|
||||||
// mask[i] = false;
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// else
|
|
||||||
// {
|
|
||||||
// // dense path
|
|
||||||
// for(int i=0; i<rows; ++i)
|
|
||||||
// {
|
|
||||||
// if(mask[i])
|
|
||||||
// {
|
|
||||||
// mask[i] = false;
|
|
||||||
// res.insertBackNoCheck(j,i) = values[i];
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
|
|
||||||
}
|
|
||||||
res.finalize();
|
|
||||||
}
|
|
||||||
|
|
||||||
// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
static void ei_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
// return ei_sparse_product_impl2(lhs,rhs,res);
|
|
||||||
|
|
||||||
typedef typename ei_cleantype<Lhs>::type::Scalar Scalar;
|
|
||||||
typedef typename ei_cleantype<Lhs>::type::Index Index;
|
|
||||||
|
|
||||||
// make sure to call innerSize/outerSize since we fake the storage order.
|
|
||||||
Index rows = lhs.innerSize();
|
|
||||||
Index cols = rhs.outerSize();
|
|
||||||
//int size = lhs.outerSize();
|
|
||||||
ei_assert(lhs.outerSize() == rhs.innerSize());
|
|
||||||
|
|
||||||
// allocate a temporary buffer
|
|
||||||
AmbiVector<Scalar,Index> tempVector(rows);
|
|
||||||
|
|
||||||
// estimate the number of non zero entries
|
|
||||||
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
|
|
||||||
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
|
|
||||||
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
|
|
||||||
|
|
||||||
res.resize(rows, cols);
|
|
||||||
res.reserve(Index(ratioRes*rows*cols));
|
|
||||||
for (Index j=0; j<cols; ++j)
|
|
||||||
{
|
|
||||||
// let's do a more accurate determination of the nnz ratio for the current column j of res
|
|
||||||
//float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
|
|
||||||
// FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
|
|
||||||
float ratioColRes = ratioRes;
|
|
||||||
tempVector.init(ratioColRes);
|
|
||||||
tempVector.setZero();
|
|
||||||
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
|
||||||
{
|
|
||||||
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
|
|
||||||
tempVector.restart();
|
|
||||||
Scalar x = rhsIt.value();
|
|
||||||
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
|
|
||||||
{
|
|
||||||
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
res.startVec(j);
|
|
||||||
for (typename AmbiVector<Scalar,Index>::Iterator it(tempVector); it; ++it)
|
|
||||||
res.insertBackByOuterInner(j,it.index()) = it.value();
|
|
||||||
}
|
|
||||||
res.finalize();
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType,
|
|
||||||
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
|
|
||||||
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
|
|
||||||
int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit>
|
|
||||||
struct ei_sparse_product_selector;
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
|
||||||
{
|
|
||||||
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
|
||||||
|
|
||||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
// std::cerr << __LINE__ << "\n";
|
|
||||||
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
|
|
||||||
ei_sparse_product_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res);
|
|
||||||
res.swap(_res);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
|
||||||
{
|
|
||||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
// std::cerr << __LINE__ << "\n";
|
|
||||||
// we need a col-major matrix to hold the result
|
|
||||||
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
|
||||||
SparseTemporaryType _res(res.rows(), res.cols());
|
|
||||||
ei_sparse_product_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res);
|
|
||||||
res = _res;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
|
||||||
{
|
|
||||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
// std::cerr << __LINE__ << "\n";
|
|
||||||
// let's transpose the product to get a column x column product
|
|
||||||
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
|
|
||||||
ei_sparse_product_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res);
|
|
||||||
res.swap(_res);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
|
||||||
{
|
|
||||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
// std::cerr << "here...\n";
|
|
||||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
||||||
ColMajorMatrix colLhs(lhs);
|
|
||||||
ColMajorMatrix colRhs(rhs);
|
|
||||||
// std::cerr << "more...\n";
|
|
||||||
ei_sparse_product_impl<ColMajorMatrix,ColMajorMatrix,ResultType>(colLhs, colRhs, res);
|
|
||||||
// std::cerr << "OK.\n";
|
|
||||||
|
|
||||||
// let's transpose the product to get a column x column product
|
|
||||||
|
|
||||||
// typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
|
||||||
// SparseTemporaryType _res(res.cols(), res.rows());
|
|
||||||
// ei_sparse_product_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res);
|
|
||||||
// res = _res.transpose();
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// NOTE the 2 others cases (col row *) must never occurs since they are caught
|
|
||||||
// by ProductReturnType which transform it to (col col *) by evaluating rhs.
|
|
||||||
|
|
||||||
|
|
||||||
// sparse = sparse * sparse
|
|
||||||
template<typename Derived>
|
|
||||||
template<typename Lhs, typename Rhs>
|
|
||||||
inline Derived& SparseMatrixBase<Derived>::operator=(const SparseProduct<Lhs,Rhs>& product)
|
|
||||||
{
|
|
||||||
// std::cerr << "there..." << typeid(Lhs).name() << " " << typeid(Lhs).name() << " " << (Derived::Flags&&RowMajorBit) << "\n";
|
|
||||||
ei_sparse_product_selector<
|
|
||||||
typename ei_cleantype<Lhs>::type,
|
|
||||||
typename ei_cleantype<Rhs>::type,
|
|
||||||
Derived>::run(product.lhs(),product.rhs(),derived());
|
|
||||||
return derived();
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType,
|
|
||||||
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
|
|
||||||
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
|
|
||||||
int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit>
|
|
||||||
struct ei_sparse_product_selector2;
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
|
||||||
{
|
|
||||||
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
|
||||||
|
|
||||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
ei_sparse_product_impl2<Lhs,Rhs,ResultType>(lhs, rhs, res);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
|
|
||||||
{
|
|
||||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
// prevent warnings until the code is fixed
|
|
||||||
EIGEN_UNUSED_VARIABLE(lhs);
|
|
||||||
EIGEN_UNUSED_VARIABLE(rhs);
|
|
||||||
EIGEN_UNUSED_VARIABLE(res);
|
|
||||||
|
|
||||||
// typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
||||||
// RowMajorMatrix rhsRow = rhs;
|
|
||||||
// RowMajorMatrix resRow(res.rows(), res.cols());
|
|
||||||
// ei_sparse_product_impl2<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
|
|
||||||
// res = resRow;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
|
|
||||||
{
|
|
||||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
||||||
RowMajorMatrix lhsRow = lhs;
|
|
||||||
RowMajorMatrix resRow(res.rows(), res.cols());
|
|
||||||
ei_sparse_product_impl2<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
|
|
||||||
res = resRow;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
|
||||||
{
|
|
||||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
||||||
RowMajorMatrix resRow(res.rows(), res.cols());
|
|
||||||
ei_sparse_product_impl2<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
|
|
||||||
res = resRow;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
|
||||||
{
|
|
||||||
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
|
||||||
|
|
||||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
||||||
ColMajorMatrix resCol(res.rows(), res.cols());
|
|
||||||
ei_sparse_product_impl2<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
|
|
||||||
res = resCol;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
|
|
||||||
{
|
|
||||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
||||||
ColMajorMatrix lhsCol = lhs;
|
|
||||||
ColMajorMatrix resCol(res.rows(), res.cols());
|
|
||||||
ei_sparse_product_impl2<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
|
|
||||||
res = resCol;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
|
|
||||||
{
|
|
||||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
||||||
ColMajorMatrix rhsCol = rhs;
|
|
||||||
ColMajorMatrix resCol(res.rows(), res.cols());
|
|
||||||
ei_sparse_product_impl2<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
|
|
||||||
res = resCol;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs, typename ResultType>
|
|
||||||
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
|
||||||
{
|
|
||||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
||||||
{
|
|
||||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
||||||
// ColMajorMatrix lhsTr(lhs);
|
|
||||||
// ColMajorMatrix rhsTr(rhs);
|
|
||||||
// ColMajorMatrix aux(res.rows(), res.cols());
|
|
||||||
// ei_sparse_product_impl2<Rhs,Lhs,ColMajorMatrix>(rhs, lhs, aux);
|
|
||||||
// // ColMajorMatrix aux2 = aux.transpose();
|
|
||||||
// res = aux;
|
|
||||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
||||||
ColMajorMatrix lhsCol(lhs);
|
|
||||||
ColMajorMatrix rhsCol(rhs);
|
|
||||||
ColMajorMatrix resCol(res.rows(), res.cols());
|
|
||||||
ei_sparse_product_impl2<ColMajorMatrix,ColMajorMatrix,ColMajorMatrix>(lhsCol, rhsCol, resCol);
|
|
||||||
res = resCol;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Derived>
|
|
||||||
template<typename Lhs, typename Rhs>
|
|
||||||
inline void SparseMatrixBase<Derived>::_experimentalNewProduct(const Lhs& lhs, const Rhs& rhs)
|
|
||||||
{
|
|
||||||
//derived().resize(lhs.rows(), rhs.cols());
|
|
||||||
ei_sparse_product_selector2<
|
|
||||||
typename ei_cleantype<Lhs>::type,
|
|
||||||
typename ei_cleantype<Rhs>::type,
|
|
||||||
Derived>::run(lhs,rhs,derived());
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs>
|
|
||||||
struct ei_traits<SparseTimeDenseProduct<Lhs,Rhs> >
|
|
||||||
: ei_traits<ProductBase<SparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs> >
|
|
||||||
{
|
|
||||||
typedef Dense StorageKind;
|
|
||||||
typedef MatrixXpr XprKind;
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs>
|
|
||||||
class SparseTimeDenseProduct
|
|
||||||
: public ProductBase<SparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs>
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
EIGEN_PRODUCT_PUBLIC_INTERFACE(SparseTimeDenseProduct)
|
|
||||||
|
|
||||||
SparseTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
|
|
||||||
{}
|
|
||||||
|
|
||||||
template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
|
|
||||||
{
|
|
||||||
typedef typename ei_cleantype<Lhs>::type _Lhs;
|
|
||||||
typedef typename ei_cleantype<Rhs>::type _Rhs;
|
|
||||||
typedef typename _Lhs::InnerIterator LhsInnerIterator;
|
|
||||||
enum { LhsIsRowMajor = (_Lhs::Flags&RowMajorBit)==RowMajorBit };
|
|
||||||
for(Index j=0; j<m_lhs.outerSize(); ++j)
|
|
||||||
{
|
|
||||||
typename Rhs::Scalar rhs_j = alpha * m_rhs.coeff(j,0);
|
|
||||||
Block<Dest,1,Dest::ColsAtCompileTime> dest_j(dest.row(LhsIsRowMajor ? j : 0));
|
|
||||||
for(LhsInnerIterator it(m_lhs,j); it ;++it)
|
|
||||||
{
|
|
||||||
if(LhsIsRowMajor) dest_j += (alpha*it.value()) * m_rhs.row(it.index());
|
|
||||||
else if(Rhs::ColsAtCompileTime==1) dest.coeffRef(it.index()) += it.value() * rhs_j;
|
|
||||||
else dest.row(it.index()) += (alpha*it.value()) * m_rhs.row(j);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
SparseTimeDenseProduct& operator=(const SparseTimeDenseProduct&);
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
// dense = dense * sparse
|
|
||||||
template<typename Lhs, typename Rhs>
|
|
||||||
struct ei_traits<DenseTimeSparseProduct<Lhs,Rhs> >
|
|
||||||
: ei_traits<ProductBase<DenseTimeSparseProduct<Lhs,Rhs>, Lhs, Rhs> >
|
|
||||||
{
|
|
||||||
typedef Dense StorageKind;
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs>
|
|
||||||
class DenseTimeSparseProduct
|
|
||||||
: public ProductBase<DenseTimeSparseProduct<Lhs,Rhs>, Lhs, Rhs>
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
EIGEN_PRODUCT_PUBLIC_INTERFACE(DenseTimeSparseProduct)
|
|
||||||
|
|
||||||
DenseTimeSparseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
|
|
||||||
{}
|
|
||||||
|
|
||||||
template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
|
|
||||||
{
|
|
||||||
typedef typename ei_cleantype<Rhs>::type _Rhs;
|
|
||||||
typedef typename _Rhs::InnerIterator RhsInnerIterator;
|
|
||||||
enum { RhsIsRowMajor = (_Rhs::Flags&RowMajorBit)==RowMajorBit };
|
|
||||||
for(Index j=0; j<m_rhs.outerSize(); ++j)
|
|
||||||
for(RhsInnerIterator i(m_rhs,j); i; ++i)
|
|
||||||
dest.col(RhsIsRowMajor ? i.index() : j) += (alpha*i.value()) * m_lhs.col(RhsIsRowMajor ? j : i.index());
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
DenseTimeSparseProduct& operator=(const DenseTimeSparseProduct&);
|
|
||||||
};
|
|
||||||
|
|
||||||
// sparse * sparse
|
|
||||||
template<typename Derived>
|
|
||||||
template<typename OtherDerived>
|
|
||||||
inline const typename SparseProductReturnType<Derived,OtherDerived>::Type
|
|
||||||
SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other) const
|
|
||||||
{
|
|
||||||
return typename SparseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
|
||||||
}
|
|
||||||
|
|
||||||
// sparse * dense
|
|
||||||
template<typename Derived>
|
|
||||||
template<typename OtherDerived>
|
|
||||||
inline const SparseTimeDenseProduct<Derived,OtherDerived>
|
|
||||||
SparseMatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
|
|
||||||
{
|
|
||||||
return SparseTimeDenseProduct<Derived,OtherDerived>(derived(), other.derived());
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif // EIGEN_SPARSEPRODUCT_H
|
#endif // EIGEN_SPARSEPRODUCT_H
|
||||||
|
390
Eigen/src/Sparse/SparseSparseProduct.h
Normal file
390
Eigen/src/Sparse/SparseSparseProduct.h
Normal file
@ -0,0 +1,390 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#ifndef EIGEN_SPARSESPARSEPRODUCT_H
|
||||||
|
#define EIGEN_SPARSESPARSEPRODUCT_H
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
static void ei_sparse_product_impl2(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
typedef typename ei_cleantype<Lhs>::type::Scalar Scalar;
|
||||||
|
typedef typename ei_cleantype<Lhs>::type::Index Index;
|
||||||
|
|
||||||
|
// make sure to call innerSize/outerSize since we fake the storage order.
|
||||||
|
Index rows = lhs.innerSize();
|
||||||
|
Index cols = rhs.outerSize();
|
||||||
|
ei_assert(lhs.outerSize() == rhs.innerSize());
|
||||||
|
|
||||||
|
std::vector<bool> mask(rows,false);
|
||||||
|
Matrix<Scalar,Dynamic,1> values(rows);
|
||||||
|
Matrix<Index,Dynamic,1> indices(rows);
|
||||||
|
|
||||||
|
// estimate the number of non zero entries
|
||||||
|
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
|
||||||
|
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
|
||||||
|
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
|
||||||
|
|
||||||
|
// int t200 = rows/(log2(200)*1.39);
|
||||||
|
// int t = (rows*100)/139;
|
||||||
|
|
||||||
|
res.resize(rows, cols);
|
||||||
|
res.reserve(Index(ratioRes*rows*cols));
|
||||||
|
// we compute each column of the result, one after the other
|
||||||
|
for (Index j=0; j<cols; ++j)
|
||||||
|
{
|
||||||
|
|
||||||
|
res.startVec(j);
|
||||||
|
Index nnz = 0;
|
||||||
|
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
||||||
|
{
|
||||||
|
Scalar y = rhsIt.value();
|
||||||
|
Index k = rhsIt.index();
|
||||||
|
for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
|
||||||
|
{
|
||||||
|
Index i = lhsIt.index();
|
||||||
|
Scalar x = lhsIt.value();
|
||||||
|
if(!mask[i])
|
||||||
|
{
|
||||||
|
mask[i] = true;
|
||||||
|
// values[i] = x * y;
|
||||||
|
// indices[nnz] = i;
|
||||||
|
++nnz;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
values[i] += x * y;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// FIXME reserve nnz non zeros
|
||||||
|
// FIXME implement fast sort algorithms for very small nnz
|
||||||
|
// if the result is sparse enough => use a quick sort
|
||||||
|
// otherwise => loop through the entire vector
|
||||||
|
// In order to avoid to perform an expensive log2 when the
|
||||||
|
// result is clearly very sparse we use a linear bound up to 200.
|
||||||
|
// if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
|
||||||
|
// {
|
||||||
|
// if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
|
||||||
|
// for(int k=0; k<nnz; ++k)
|
||||||
|
// {
|
||||||
|
// int i = indices[k];
|
||||||
|
// res.insertBackNoCheck(j,i) = values[i];
|
||||||
|
// mask[i] = false;
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// else
|
||||||
|
// {
|
||||||
|
// // dense path
|
||||||
|
// for(int i=0; i<rows; ++i)
|
||||||
|
// {
|
||||||
|
// if(mask[i])
|
||||||
|
// {
|
||||||
|
// mask[i] = false;
|
||||||
|
// res.insertBackNoCheck(j,i) = values[i];
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
|
||||||
|
}
|
||||||
|
res.finalize();
|
||||||
|
}
|
||||||
|
|
||||||
|
// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
static void ei_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
// return ei_sparse_product_impl2(lhs,rhs,res);
|
||||||
|
|
||||||
|
typedef typename ei_cleantype<Lhs>::type::Scalar Scalar;
|
||||||
|
typedef typename ei_cleantype<Lhs>::type::Index Index;
|
||||||
|
|
||||||
|
// make sure to call innerSize/outerSize since we fake the storage order.
|
||||||
|
Index rows = lhs.innerSize();
|
||||||
|
Index cols = rhs.outerSize();
|
||||||
|
//int size = lhs.outerSize();
|
||||||
|
ei_assert(lhs.outerSize() == rhs.innerSize());
|
||||||
|
|
||||||
|
// allocate a temporary buffer
|
||||||
|
AmbiVector<Scalar,Index> tempVector(rows);
|
||||||
|
|
||||||
|
// estimate the number of non zero entries
|
||||||
|
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
|
||||||
|
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
|
||||||
|
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
|
||||||
|
|
||||||
|
res.resize(rows, cols);
|
||||||
|
res.reserve(Index(ratioRes*rows*cols));
|
||||||
|
for (Index j=0; j<cols; ++j)
|
||||||
|
{
|
||||||
|
// let's do a more accurate determination of the nnz ratio for the current column j of res
|
||||||
|
//float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
|
||||||
|
// FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
|
||||||
|
float ratioColRes = ratioRes;
|
||||||
|
tempVector.init(ratioColRes);
|
||||||
|
tempVector.setZero();
|
||||||
|
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
||||||
|
{
|
||||||
|
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
|
||||||
|
tempVector.restart();
|
||||||
|
Scalar x = rhsIt.value();
|
||||||
|
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
|
||||||
|
{
|
||||||
|
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
res.startVec(j);
|
||||||
|
for (typename AmbiVector<Scalar,Index>::Iterator it(tempVector); it; ++it)
|
||||||
|
res.insertBackByOuterInner(j,it.index()) = it.value();
|
||||||
|
}
|
||||||
|
res.finalize();
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType,
|
||||||
|
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
|
||||||
|
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
|
||||||
|
int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit>
|
||||||
|
struct ei_sparse_product_selector;
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
||||||
|
{
|
||||||
|
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
||||||
|
|
||||||
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
// std::cerr << __LINE__ << "\n";
|
||||||
|
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
|
||||||
|
ei_sparse_product_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res);
|
||||||
|
res.swap(_res);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
||||||
|
{
|
||||||
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
// std::cerr << __LINE__ << "\n";
|
||||||
|
// we need a col-major matrix to hold the result
|
||||||
|
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
||||||
|
SparseTemporaryType _res(res.rows(), res.cols());
|
||||||
|
ei_sparse_product_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res);
|
||||||
|
res = _res;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
||||||
|
{
|
||||||
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
// std::cerr << __LINE__ << "\n";
|
||||||
|
// let's transpose the product to get a column x column product
|
||||||
|
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
|
||||||
|
ei_sparse_product_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res);
|
||||||
|
res.swap(_res);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
||||||
|
{
|
||||||
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
// std::cerr << "here...\n";
|
||||||
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
||||||
|
ColMajorMatrix colLhs(lhs);
|
||||||
|
ColMajorMatrix colRhs(rhs);
|
||||||
|
// std::cerr << "more...\n";
|
||||||
|
ei_sparse_product_impl<ColMajorMatrix,ColMajorMatrix,ResultType>(colLhs, colRhs, res);
|
||||||
|
// std::cerr << "OK.\n";
|
||||||
|
|
||||||
|
// let's transpose the product to get a column x column product
|
||||||
|
|
||||||
|
// typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
||||||
|
// SparseTemporaryType _res(res.cols(), res.rows());
|
||||||
|
// ei_sparse_product_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res);
|
||||||
|
// res = _res.transpose();
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// NOTE the 2 others cases (col row *) must never occurs since they are caught
|
||||||
|
// by ProductReturnType which transform it to (col col *) by evaluating rhs.
|
||||||
|
|
||||||
|
|
||||||
|
// sparse = sparse * sparse
|
||||||
|
template<typename Derived>
|
||||||
|
template<typename Lhs, typename Rhs>
|
||||||
|
inline Derived& SparseMatrixBase<Derived>::operator=(const SparseSparseProduct<Lhs,Rhs>& product)
|
||||||
|
{
|
||||||
|
// std::cerr << "there..." << typeid(Lhs).name() << " " << typeid(Lhs).name() << " " << (Derived::Flags&&RowMajorBit) << "\n";
|
||||||
|
ei_sparse_product_selector<
|
||||||
|
typename ei_cleantype<Lhs>::type,
|
||||||
|
typename ei_cleantype<Rhs>::type,
|
||||||
|
Derived>::run(product.lhs(),product.rhs(),derived());
|
||||||
|
return derived();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType,
|
||||||
|
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
|
||||||
|
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
|
||||||
|
int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit>
|
||||||
|
struct ei_sparse_product_selector2;
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
||||||
|
{
|
||||||
|
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
||||||
|
|
||||||
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
ei_sparse_product_impl2<Lhs,Rhs,ResultType>(lhs, rhs, res);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
|
||||||
|
{
|
||||||
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
// prevent warnings until the code is fixed
|
||||||
|
EIGEN_UNUSED_VARIABLE(lhs);
|
||||||
|
EIGEN_UNUSED_VARIABLE(rhs);
|
||||||
|
EIGEN_UNUSED_VARIABLE(res);
|
||||||
|
|
||||||
|
// typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
||||||
|
// RowMajorMatrix rhsRow = rhs;
|
||||||
|
// RowMajorMatrix resRow(res.rows(), res.cols());
|
||||||
|
// ei_sparse_product_impl2<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
|
||||||
|
// res = resRow;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
|
||||||
|
{
|
||||||
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
||||||
|
RowMajorMatrix lhsRow = lhs;
|
||||||
|
RowMajorMatrix resRow(res.rows(), res.cols());
|
||||||
|
ei_sparse_product_impl2<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
|
||||||
|
res = resRow;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
||||||
|
{
|
||||||
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
||||||
|
RowMajorMatrix resRow(res.rows(), res.cols());
|
||||||
|
ei_sparse_product_impl2<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
|
||||||
|
res = resRow;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
||||||
|
{
|
||||||
|
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
||||||
|
|
||||||
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
||||||
|
ColMajorMatrix resCol(res.rows(), res.cols());
|
||||||
|
ei_sparse_product_impl2<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
|
||||||
|
res = resCol;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
|
||||||
|
{
|
||||||
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
||||||
|
ColMajorMatrix lhsCol = lhs;
|
||||||
|
ColMajorMatrix resCol(res.rows(), res.cols());
|
||||||
|
ei_sparse_product_impl2<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
|
||||||
|
res = resCol;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
|
||||||
|
{
|
||||||
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
||||||
|
ColMajorMatrix rhsCol = rhs;
|
||||||
|
ColMajorMatrix resCol(res.rows(), res.cols());
|
||||||
|
ei_sparse_product_impl2<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
|
||||||
|
res = resCol;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Lhs, typename Rhs, typename ResultType>
|
||||||
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
||||||
|
{
|
||||||
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||||
|
{
|
||||||
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
||||||
|
// ColMajorMatrix lhsTr(lhs);
|
||||||
|
// ColMajorMatrix rhsTr(rhs);
|
||||||
|
// ColMajorMatrix aux(res.rows(), res.cols());
|
||||||
|
// ei_sparse_product_impl2<Rhs,Lhs,ColMajorMatrix>(rhs, lhs, aux);
|
||||||
|
// // ColMajorMatrix aux2 = aux.transpose();
|
||||||
|
// res = aux;
|
||||||
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
||||||
|
ColMajorMatrix lhsCol(lhs);
|
||||||
|
ColMajorMatrix rhsCol(rhs);
|
||||||
|
ColMajorMatrix resCol(res.rows(), res.cols());
|
||||||
|
ei_sparse_product_impl2<ColMajorMatrix,ColMajorMatrix,ColMajorMatrix>(lhsCol, rhsCol, resCol);
|
||||||
|
res = resCol;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Derived>
|
||||||
|
template<typename Lhs, typename Rhs>
|
||||||
|
inline void SparseMatrixBase<Derived>::_experimentalNewProduct(const Lhs& lhs, const Rhs& rhs)
|
||||||
|
{
|
||||||
|
//derived().resize(lhs.rows(), rhs.cols());
|
||||||
|
ei_sparse_product_selector2<
|
||||||
|
typename ei_cleantype<Lhs>::type,
|
||||||
|
typename ei_cleantype<Rhs>::type,
|
||||||
|
Derived>::run(lhs,rhs,derived());
|
||||||
|
}
|
||||||
|
|
||||||
|
// sparse * sparse
|
||||||
|
template<typename Derived>
|
||||||
|
template<typename OtherDerived>
|
||||||
|
inline const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
|
||||||
|
SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other) const
|
||||||
|
{
|
||||||
|
return typename SparseSparseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // EIGEN_SPARSESPARSEPRODUCT_H
|
@ -28,6 +28,7 @@
|
|||||||
template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>
|
template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>
|
||||||
: public SparseMatrixBase<Transpose<MatrixType> >
|
: public SparseMatrixBase<Transpose<MatrixType> >
|
||||||
{
|
{
|
||||||
|
typedef typename ei_cleantype<typename MatrixType::Nested>::type _MatrixTypeNested;
|
||||||
public:
|
public:
|
||||||
|
|
||||||
EIGEN_SPARSE_PUBLIC_INTERFACE(Transpose<MatrixType>)
|
EIGEN_SPARSE_PUBLIC_INTERFACE(Transpose<MatrixType>)
|
||||||
@ -36,24 +37,12 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>
|
|||||||
class ReverseInnerIterator;
|
class ReverseInnerIterator;
|
||||||
|
|
||||||
inline Index nonZeros() const { return derived().nestedExpression().nonZeros(); }
|
inline Index nonZeros() const { return derived().nestedExpression().nonZeros(); }
|
||||||
|
|
||||||
// FIXME should be keep them ?
|
|
||||||
inline Scalar& coeffRef(Index row, Index col)
|
|
||||||
{ return const_cast_derived().nestedExpression().coeffRef(col, row); }
|
|
||||||
|
|
||||||
inline const Scalar coeff(Index row, Index col) const
|
|
||||||
{ return derived().nestedExpression().coeff(col, row); }
|
|
||||||
|
|
||||||
inline const Scalar coeff(Index index) const
|
|
||||||
{ return derived().nestedExpression().coeff(index); }
|
|
||||||
|
|
||||||
inline Scalar& coeffRef(Index index)
|
|
||||||
{ return const_cast_derived().nestedExpression().coeffRef(index); }
|
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::InnerIterator : public MatrixType::InnerIterator
|
template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::InnerIterator
|
||||||
|
: public _MatrixTypeNested::InnerIterator
|
||||||
{
|
{
|
||||||
typedef typename MatrixType::InnerIterator Base;
|
typedef typename _MatrixTypeNested::InnerIterator Base;
|
||||||
public:
|
public:
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE InnerIterator(const TransposeImpl& trans, Index outer)
|
EIGEN_STRONG_INLINE InnerIterator(const TransposeImpl& trans, Index outer)
|
||||||
@ -63,9 +52,10 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::InnerItera
|
|||||||
inline Index col() const { return Base::row(); }
|
inline Index col() const { return Base::row(); }
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::ReverseInnerIterator : public MatrixType::ReverseInnerIterator
|
template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::ReverseInnerIterator
|
||||||
|
: public _MatrixTypeNested::ReverseInnerIterator
|
||||||
{
|
{
|
||||||
typedef typename MatrixType::ReverseInnerIterator Base;
|
typedef typename _MatrixTypeNested::ReverseInnerIterator Base;
|
||||||
public:
|
public:
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE ReverseInnerIterator(const TransposeImpl& xpr, Index outer)
|
EIGEN_STRONG_INLINE ReverseInnerIterator(const TransposeImpl& xpr, Index outer)
|
||||||
|
@ -92,15 +92,11 @@ template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView;
|
|||||||
template<typename Lhs, typename Rhs> class SparseDiagonalProduct;
|
template<typename Lhs, typename Rhs> class SparseDiagonalProduct;
|
||||||
template<typename MatrixType> class SparseView;
|
template<typename MatrixType> class SparseView;
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs> class SparseProduct;
|
template<typename Lhs, typename Rhs> class SparseSparseProduct;
|
||||||
template<typename Lhs, typename Rhs> class SparseTimeDenseProduct;
|
template<typename Lhs, typename Rhs> class SparseTimeDenseProduct;
|
||||||
template<typename Lhs, typename Rhs> class DenseTimeSparseProduct;
|
template<typename Lhs, typename Rhs> class DenseTimeSparseProduct;
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs,
|
template<typename Lhs, typename Rhs> struct SparseSparseProductReturnType;
|
||||||
typename LhsStorage = typename ei_traits<Lhs>::StorageKind,
|
|
||||||
typename RhsStorage = typename ei_traits<Rhs>::StorageKind> struct ei_sparse_product_mode;
|
|
||||||
|
|
||||||
template<typename Lhs, typename Rhs> struct SparseProductReturnType;
|
|
||||||
|
|
||||||
template<typename T> struct ei_eval<T,Sparse>
|
template<typename T> struct ei_eval<T,Sparse>
|
||||||
{
|
{
|
||||||
|
@ -247,7 +247,7 @@ class SparseVector
|
|||||||
|
|
||||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||||
template<typename Lhs, typename Rhs>
|
template<typename Lhs, typename Rhs>
|
||||||
inline SparseVector& operator=(const SparseProduct<Lhs,Rhs>& product)
|
inline SparseVector& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
|
||||||
{
|
{
|
||||||
return Base::operator=(product);
|
return Base::operator=(product);
|
||||||
}
|
}
|
||||||
|
@ -36,6 +36,9 @@ template<typename SparseMatrixType> void sparse_product(const SparseMatrixType&
|
|||||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||||
|
|
||||||
|
Scalar s1 = ei_random<Scalar>();
|
||||||
|
Scalar s2 = ei_random<Scalar>();
|
||||||
|
|
||||||
// test matrix-matrix product
|
// test matrix-matrix product
|
||||||
{
|
{
|
||||||
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
|
||||||
@ -49,11 +52,16 @@ template<typename SparseMatrixType> void sparse_product(const SparseMatrixType&
|
|||||||
initSparse<Scalar>(density, refMat2, m2);
|
initSparse<Scalar>(density, refMat2, m2);
|
||||||
initSparse<Scalar>(density, refMat3, m3);
|
initSparse<Scalar>(density, refMat3, m3);
|
||||||
initSparse<Scalar>(density, refMat4, m4);
|
initSparse<Scalar>(density, refMat4, m4);
|
||||||
|
|
||||||
VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
|
VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3);
|
||||||
VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
|
VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
|
||||||
VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
|
VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
|
||||||
VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
|
VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
|
||||||
|
|
||||||
|
VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1);
|
||||||
|
VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1);
|
||||||
|
VERIFY_IS_APPROX(m4 = s2*m2*m3*s1, refMat4 = s2*refMat2*refMat3*s1);
|
||||||
|
|
||||||
// sparse * dense
|
// sparse * dense
|
||||||
VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
|
VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
|
||||||
VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose());
|
VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose());
|
||||||
|
Loading…
x
Reference in New Issue
Block a user