mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 03:09:01 +08:00
Correct the SPQR backend for rank-deficient matrices and delete some public functions
This commit is contained in:
parent
bc18e06fe3
commit
19de016fef
@ -137,19 +137,21 @@ class SPQR
|
||||
eigen_assert(b.cols()==1 && "This method is for vectors only");
|
||||
|
||||
//Compute Q^T * b
|
||||
dest = matrixQ().transpose() * b;
|
||||
|
||||
// Solves with the triangular matrix R
|
||||
Dest y;
|
||||
y = this->matrixR().solve(dest.derived().topRows(cols()));
|
||||
y = matrixQ().transpose() * b;
|
||||
// Solves with the triangular matrix R
|
||||
Index rk = this->rank();
|
||||
y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y.topRows(rk));
|
||||
y.bottomRows(cols()-rk).setZero();
|
||||
// Apply the column permutation
|
||||
dest = colsPermutation() * y;
|
||||
dest.topRows(cols()) = colsPermutation() * y.topRows(cols());
|
||||
|
||||
m_info = Success;
|
||||
}
|
||||
|
||||
/// Get the sparse triangular matrix R. It is a sparse matrix
|
||||
const SparseTriangularView<MatrixType, Upper> matrixR() const
|
||||
/** \returns the sparse triangular factor R. It is a sparse matrix
|
||||
*/
|
||||
const MatrixType matrixR() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
|
||||
if(!m_isRUpToDate) {
|
||||
@ -183,15 +185,12 @@ class SPQR
|
||||
return m_cc.SPQR_istat[4];
|
||||
}
|
||||
/// Set the fill-reducing ordering method to be used
|
||||
void setOrdering(int ord) { m_ordering = ord;}
|
||||
void setSPQROrdering(int ord) { m_ordering = ord;}
|
||||
/// Set the tolerance tol to treat columns with 2-norm < =tol as zero
|
||||
void setThreshold(RealScalar tol) { m_tolerance = tol; }
|
||||
void setPivotThreshold(RealScalar tol) { m_tolerance = tol; }
|
||||
|
||||
/// Return a pointer to SPQR workspace
|
||||
cholmod_common *cc() const { return &m_cc; }
|
||||
cholmod_sparse * H() const { return m_H; }
|
||||
Index *HPinv() const { return m_HPinv; }
|
||||
cholmod_dense* HTau() const { return m_HTau; }
|
||||
/** \returns a pointer to the SPQR workspace */
|
||||
cholmod_common *cholmodCommon() const { return &m_cc; }
|
||||
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
@ -221,6 +220,7 @@ class SPQR
|
||||
mutable cholmod_dense *m_HTau; // The Householder coefficients
|
||||
mutable Index m_rank; // The rank of the matrix
|
||||
mutable cholmod_common m_cc; // Workspace and parameters
|
||||
template<typename ,typename > friend struct SPQR_QProduct;
|
||||
};
|
||||
|
||||
template <typename SPQRType, typename Derived>
|
||||
@ -240,9 +240,9 @@ struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
|
||||
cholmod_dense y_cd;
|
||||
cholmod_dense *x_cd;
|
||||
int method = m_transpose ? SPQR_QTX : SPQR_QX;
|
||||
cholmod_common *cc = m_spqr.cc();
|
||||
cholmod_common *cc = m_spqr.cholmodCommon();
|
||||
y_cd = viewAsCholmod(m_other.const_cast_derived());
|
||||
x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.H(), m_spqr.HTau(), m_spqr.HPinv(), &y_cd, cc);
|
||||
x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
|
||||
res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
|
||||
cholmod_free_dense(&x_cd, cc);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user