mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-01 00:04:14 +08:00
Merged in godeffroy/eigen_tensor_generalized_contraction (pull request PR-130)
Allowed tensor contraction operation with an empty array of dimension pairs, which performs a tensor product.
This commit is contained in:
commit
1a30a8e7a2
@ -66,7 +66,7 @@ class BaseTensorContractionMapper {
|
|||||||
const bool left = (side == Lhs);
|
const bool left = (side == Lhs);
|
||||||
Index nocontract_val = left ? row : col;
|
Index nocontract_val = left ? row : col;
|
||||||
Index linidx = 0;
|
Index linidx = 0;
|
||||||
for (int i = array_size<nocontract_t>::value - 1; i > 0; i--) {
|
for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
|
||||||
const Index idx = nocontract_val / m_ij_strides[i];
|
const Index idx = nocontract_val / m_ij_strides[i];
|
||||||
linidx += idx * m_nocontract_strides[i];
|
linidx += idx * m_nocontract_strides[i];
|
||||||
nocontract_val -= idx * m_ij_strides[i];
|
nocontract_val -= idx * m_ij_strides[i];
|
||||||
@ -81,17 +81,19 @@ class BaseTensorContractionMapper {
|
|||||||
}
|
}
|
||||||
|
|
||||||
Index contract_val = left ? col : row;
|
Index contract_val = left ? col : row;
|
||||||
for (int i = array_size<contract_t>::value - 1; i > 0; i--) {
|
for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
|
||||||
const Index idx = contract_val / m_k_strides[i];
|
const Index idx = contract_val / m_k_strides[i];
|
||||||
linidx += idx * m_contract_strides[i];
|
linidx += idx * m_contract_strides[i];
|
||||||
contract_val -= idx * m_k_strides[i];
|
contract_val -= idx * m_k_strides[i];
|
||||||
}
|
}
|
||||||
EIGEN_STATIC_ASSERT(array_size<contract_t>::value > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
||||||
if (side == Rhs && inner_dim_contiguous) {
|
if(array_size<contract_t>::value > 0) {
|
||||||
eigen_assert(m_contract_strides[0] == 1);
|
if (side == Rhs && inner_dim_contiguous) {
|
||||||
linidx += contract_val;
|
eigen_assert(m_contract_strides[0] == 1);
|
||||||
} else {
|
linidx += contract_val;
|
||||||
linidx += contract_val * m_contract_strides[0];
|
} else {
|
||||||
|
linidx += contract_val * m_contract_strides[0];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return linidx;
|
return linidx;
|
||||||
@ -102,7 +104,7 @@ class BaseTensorContractionMapper {
|
|||||||
const bool left = (side == Lhs);
|
const bool left = (side == Lhs);
|
||||||
Index nocontract_val[2] = {left ? row : col, left ? row + distance : col};
|
Index nocontract_val[2] = {left ? row : col, left ? row + distance : col};
|
||||||
Index linidx[2] = {0, 0};
|
Index linidx[2] = {0, 0};
|
||||||
for (int i = array_size<nocontract_t>::value - 1; i > 0; i--) {
|
for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
|
||||||
const Index idx0 = nocontract_val[0] / m_ij_strides[i];
|
const Index idx0 = nocontract_val[0] / m_ij_strides[i];
|
||||||
const Index idx1 = nocontract_val[1] / m_ij_strides[i];
|
const Index idx1 = nocontract_val[1] / m_ij_strides[i];
|
||||||
linidx[0] += idx0 * m_nocontract_strides[i];
|
linidx[0] += idx0 * m_nocontract_strides[i];
|
||||||
@ -122,7 +124,7 @@ class BaseTensorContractionMapper {
|
|||||||
}
|
}
|
||||||
|
|
||||||
Index contract_val[2] = {left ? col : row, left ? col : row + distance};
|
Index contract_val[2] = {left ? col : row, left ? col : row + distance};
|
||||||
for (int i = array_size<contract_t>::value - 1; i > 0; i--) {
|
for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
|
||||||
const Index idx0 = contract_val[0] / m_k_strides[i];
|
const Index idx0 = contract_val[0] / m_k_strides[i];
|
||||||
const Index idx1 = contract_val[1] / m_k_strides[i];
|
const Index idx1 = contract_val[1] / m_k_strides[i];
|
||||||
linidx[0] += idx0 * m_contract_strides[i];
|
linidx[0] += idx0 * m_contract_strides[i];
|
||||||
@ -130,7 +132,7 @@ class BaseTensorContractionMapper {
|
|||||||
contract_val[0] -= idx0 * m_k_strides[i];
|
contract_val[0] -= idx0 * m_k_strides[i];
|
||||||
contract_val[1] -= idx1 * m_k_strides[i];
|
contract_val[1] -= idx1 * m_k_strides[i];
|
||||||
}
|
}
|
||||||
EIGEN_STATIC_ASSERT(array_size<contract_t>::value > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
||||||
if (side == Rhs && inner_dim_contiguous) {
|
if (side == Rhs && inner_dim_contiguous) {
|
||||||
eigen_assert(m_contract_strides[0] == 1);
|
eigen_assert(m_contract_strides[0] == 1);
|
||||||
linidx[0] += contract_val[0];
|
linidx[0] += contract_val[0];
|
||||||
@ -509,8 +511,6 @@ struct TensorContractionEvaluatorBase
|
|||||||
static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)),
|
static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)),
|
||||||
YOU_MADE_A_PROGRAMMING_MISTAKE);
|
YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||||
|
|
||||||
eigen_assert((internal::array_size<contract_t>::value > 0) && "Must contract on some indices");
|
|
||||||
|
|
||||||
|
|
||||||
DSizes<Index, LDims> eval_left_dims;
|
DSizes<Index, LDims> eval_left_dims;
|
||||||
DSizes<Index, RDims> eval_right_dims;
|
DSizes<Index, RDims> eval_right_dims;
|
||||||
@ -558,7 +558,9 @@ struct TensorContractionEvaluatorBase
|
|||||||
|
|
||||||
m_i_strides[0] = 1;
|
m_i_strides[0] = 1;
|
||||||
m_j_strides[0] = 1;
|
m_j_strides[0] = 1;
|
||||||
m_k_strides[0] = 1;
|
if(ContractDims) {
|
||||||
|
m_k_strides[0] = 1;
|
||||||
|
}
|
||||||
|
|
||||||
m_i_size = 1;
|
m_i_size = 1;
|
||||||
m_j_size = 1;
|
m_j_size = 1;
|
||||||
|
@ -448,6 +448,31 @@ static void test_small_blocking_factors()
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<int DataLayout>
|
||||||
|
static void test_tensor_product()
|
||||||
|
{
|
||||||
|
Tensor<float, 2, DataLayout> mat1(2, 3);
|
||||||
|
Tensor<float, 2, DataLayout> mat2(4, 1);
|
||||||
|
mat1.setRandom();
|
||||||
|
mat2.setRandom();
|
||||||
|
|
||||||
|
Tensor<float, 4, DataLayout> result = mat1.contract(mat2, Eigen::array<DimPair, 0>{{}});
|
||||||
|
|
||||||
|
VERIFY_IS_EQUAL(result.dimension(0), 2);
|
||||||
|
VERIFY_IS_EQUAL(result.dimension(1), 3);
|
||||||
|
VERIFY_IS_EQUAL(result.dimension(2), 4);
|
||||||
|
VERIFY_IS_EQUAL(result.dimension(3), 1);
|
||||||
|
for (int i = 0; i < result.dimension(0); ++i) {
|
||||||
|
for (int j = 0; j < result.dimension(1); ++j) {
|
||||||
|
for (int k = 0; k < result.dimension(2); ++k) {
|
||||||
|
for (int l = 0; l < result.dimension(3); ++l) {
|
||||||
|
VERIFY_IS_APPROX(result(i, j, k, l), mat1(i, j) * mat2(k, l) );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
void test_cxx11_tensor_contraction()
|
void test_cxx11_tensor_contraction()
|
||||||
{
|
{
|
||||||
@ -477,4 +502,6 @@ void test_cxx11_tensor_contraction()
|
|||||||
CALL_SUBTEST(test_tensor_vector<RowMajor>());
|
CALL_SUBTEST(test_tensor_vector<RowMajor>());
|
||||||
CALL_SUBTEST(test_small_blocking_factors<ColMajor>());
|
CALL_SUBTEST(test_small_blocking_factors<ColMajor>());
|
||||||
CALL_SUBTEST(test_small_blocking_factors<RowMajor>());
|
CALL_SUBTEST(test_small_blocking_factors<RowMajor>());
|
||||||
|
CALL_SUBTEST(test_tensor_product<ColMajor>());
|
||||||
|
CALL_SUBTEST(test_tensor_product<RowMajor>());
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user