mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
Add matrix condition estimator module that implements the Higham/Hager algorithm from http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf used in LPACK. Add rcond() methods to FullPivLU and PartialPivLU.
This commit is contained in:
parent
1b40abbf99
commit
1aa89fb855
@ -33,13 +33,13 @@
|
|||||||
#ifdef EIGEN_EXCEPTIONS
|
#ifdef EIGEN_EXCEPTIONS
|
||||||
#undef EIGEN_EXCEPTIONS
|
#undef EIGEN_EXCEPTIONS
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// All functions callable from CUDA code must be qualified with __device__
|
// All functions callable from CUDA code must be qualified with __device__
|
||||||
#define EIGEN_DEVICE_FUNC __host__ __device__
|
#define EIGEN_DEVICE_FUNC __host__ __device__
|
||||||
|
|
||||||
#else
|
#else
|
||||||
#define EIGEN_DEVICE_FUNC
|
#define EIGEN_DEVICE_FUNC
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(__CUDA_ARCH__)
|
#if defined(__CUDA_ARCH__)
|
||||||
@ -282,7 +282,7 @@ inline static const char *SimdInstructionSetsInUse(void) {
|
|||||||
// we use size_t frequently and we'll never remember to prepend it with std:: everytime just to
|
// we use size_t frequently and we'll never remember to prepend it with std:: everytime just to
|
||||||
// ensure QNX/QCC support
|
// ensure QNX/QCC support
|
||||||
using std::size_t;
|
using std::size_t;
|
||||||
// gcc 4.6.0 wants std:: for ptrdiff_t
|
// gcc 4.6.0 wants std:: for ptrdiff_t
|
||||||
using std::ptrdiff_t;
|
using std::ptrdiff_t;
|
||||||
|
|
||||||
/** \defgroup Core_Module Core module
|
/** \defgroup Core_Module Core module
|
||||||
@ -422,6 +422,7 @@ using std::ptrdiff_t;
|
|||||||
#include "src/Core/products/TriangularSolverVector.h"
|
#include "src/Core/products/TriangularSolverVector.h"
|
||||||
#include "src/Core/BandMatrix.h"
|
#include "src/Core/BandMatrix.h"
|
||||||
#include "src/Core/CoreIterators.h"
|
#include "src/Core/CoreIterators.h"
|
||||||
|
#include "src/Core/ConditionEstimator.h"
|
||||||
|
|
||||||
#include "src/Core/BooleanRedux.h"
|
#include "src/Core/BooleanRedux.h"
|
||||||
#include "src/Core/Select.h"
|
#include "src/Core/Select.h"
|
||||||
|
279
Eigen/src/Core/ConditionEstimator.h
Normal file
279
Eigen/src/Core/ConditionEstimator.h
Normal file
@ -0,0 +1,279 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2016 Rasmus Munk Larsen (rmlarsen@google.com)
|
||||||
|
//
|
||||||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||||
|
|
||||||
|
#ifndef EIGEN_CONDITIONESTIMATOR_H
|
||||||
|
#define EIGEN_CONDITIONESTIMATOR_H
|
||||||
|
|
||||||
|
namespace Eigen {
|
||||||
|
|
||||||
|
namespace internal {
|
||||||
|
template <typename Decomposition, bool IsComplex>
|
||||||
|
struct EstimateInverseL1NormImpl {};
|
||||||
|
} // namespace internal
|
||||||
|
|
||||||
|
template <typename Decomposition>
|
||||||
|
class ConditionEstimator {
|
||||||
|
public:
|
||||||
|
typedef typename Decomposition::MatrixType MatrixType;
|
||||||
|
typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
||||||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||||
|
typedef typename internal::plain_col_type<MatrixType>::type Vector;
|
||||||
|
|
||||||
|
/** \class ConditionEstimator
|
||||||
|
* \ingroup Core_Module
|
||||||
|
*
|
||||||
|
* \brief Condition number estimator.
|
||||||
|
*
|
||||||
|
* Computing a decomposition of a dense matrix takes O(n^3) operations, while
|
||||||
|
* this method estimates the condition number quickly and reliably in O(n^2)
|
||||||
|
* operations.
|
||||||
|
*
|
||||||
|
* \returns an estimate of the reciprocal condition number
|
||||||
|
* (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given the matrix and
|
||||||
|
* its decomposition. Supports the following decompositions: FullPivLU,
|
||||||
|
* PartialPivLU.
|
||||||
|
*
|
||||||
|
* \sa FullPivLU, PartialPivLU.
|
||||||
|
*/
|
||||||
|
static RealScalar rcond(const MatrixType& matrix, const Decomposition& dec) {
|
||||||
|
eigen_assert(matrix.rows() == dec.rows());
|
||||||
|
eigen_assert(matrix.cols() == dec.cols());
|
||||||
|
eigen_assert(matrix.rows() == matrix.cols());
|
||||||
|
if (dec.rows() == 0) {
|
||||||
|
return RealScalar(1);
|
||||||
|
}
|
||||||
|
RealScalar matrix_l1_norm = matrix.cwiseAbs().colwise().sum().maxCoeff();
|
||||||
|
return rcond(MatrixL1Norm(matrix), dec);
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \class ConditionEstimator
|
||||||
|
* \ingroup Core_Module
|
||||||
|
*
|
||||||
|
* \brief Condition number estimator.
|
||||||
|
*
|
||||||
|
* Computing a decomposition of a dense matrix takes O(n^3) operations, while
|
||||||
|
* this method estimates the condition number quickly and reliably in O(n^2)
|
||||||
|
* operations.
|
||||||
|
*
|
||||||
|
* \returns an estimate of the reciprocal condition number
|
||||||
|
* (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and
|
||||||
|
* its decomposition. Supports the following decompositions: FullPivLU,
|
||||||
|
* PartialPivLU.
|
||||||
|
*
|
||||||
|
* \sa FullPivLU, PartialPivLU.
|
||||||
|
*/
|
||||||
|
static RealScalar rcond(RealScalar matrix_norm, const Decomposition& dec) {
|
||||||
|
eigen_assert(dec.rows() == dec.cols());
|
||||||
|
if (dec.rows() == 0) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
if (matrix_norm == 0) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
const RealScalar inverse_matrix_norm = EstimateInverseL1Norm(dec);
|
||||||
|
return inverse_matrix_norm == 0 ? 0
|
||||||
|
: (1 / inverse_matrix_norm) / matrix_norm;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Fast algorithm for computing a lower bound estimate on the L1 norm of
|
||||||
|
* the inverse of the matrix using at most 10 calls to the solve method on its
|
||||||
|
* decomposition. This is an implementation of Algorithm 4.1 in
|
||||||
|
* http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf
|
||||||
|
* The most common usage of this algorithm is in estimating the condition
|
||||||
|
* number ||A||_1 * ||A^{-1}||_1 of a matrix A. While ||A||_1 can be computed
|
||||||
|
* directly in O(dims^2) operations (see MatrixL1Norm() below), while
|
||||||
|
* there is no cheap closed-form expression for ||A^{-1}||_1.
|
||||||
|
* Given a decompostion of A, this algorithm estimates ||A^{-1}|| in O(dims^2)
|
||||||
|
* operations. This is done by providing operators that use the decomposition
|
||||||
|
* to solve systems of the form A x = b or A^* z = c by back-substitution,
|
||||||
|
* each costing O(dims^2) operations. Since at most 10 calls are performed,
|
||||||
|
* the total cost is O(dims^2), as opposed to O(dims^3) if the inverse matrix
|
||||||
|
* B^{-1} was formed explicitly.
|
||||||
|
*/
|
||||||
|
static RealScalar EstimateInverseL1Norm(const Decomposition& dec) {
|
||||||
|
eigen_assert(dec.rows() == dec.cols());
|
||||||
|
const int n = dec.rows();
|
||||||
|
if (n == 0) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
return internal::EstimateInverseL1NormImpl<
|
||||||
|
Decomposition, NumTraits<Scalar>::IsComplex>::compute(dec);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
namespace internal {
|
||||||
|
// Partial specialization for real matrices.
|
||||||
|
template <typename Decomposition>
|
||||||
|
struct EstimateInverseL1NormImpl<Decomposition, 0> {
|
||||||
|
typedef typename Decomposition::MatrixType MatrixType;
|
||||||
|
typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
||||||
|
typedef typename internal::plain_col_type<MatrixType>::type Vector;
|
||||||
|
|
||||||
|
// Shorthand for vector L1 norm in Eigen.
|
||||||
|
inline static Scalar VectorL1Norm(const Vector& v) {
|
||||||
|
return v.template lpNorm<1>();
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline Scalar compute(const Decomposition& dec) {
|
||||||
|
const int n = dec.rows();
|
||||||
|
const Vector plus = Vector::Ones(n);
|
||||||
|
Vector v = plus / n;
|
||||||
|
v = dec.solve(v);
|
||||||
|
Scalar lower_bound = VectorL1Norm(v);
|
||||||
|
if (n == 1) {
|
||||||
|
return lower_bound;
|
||||||
|
}
|
||||||
|
// lower_bound is a lower bound on ||inv(A)||_1 = sup_v ||inv(A) v||_1 /
|
||||||
|
// ||v||_1 and is the objective maximized by the ("super-") gradient ascent
|
||||||
|
// algorithm.
|
||||||
|
// Basic idea: We know that the optimum is achieved at one of the simplices
|
||||||
|
// v = e_i, so in each iteration we follow a super-gradient to move towards
|
||||||
|
// the optimal one.
|
||||||
|
Scalar old_lower_bound = lower_bound;
|
||||||
|
const Vector minus = -Vector::Ones(n);
|
||||||
|
Vector sign_vector = (v.cwiseAbs().array() == 0).select(plus, minus);
|
||||||
|
Vector old_sign_vector = sign_vector;
|
||||||
|
int v_max_abs_index = -1;
|
||||||
|
int old_v_max_abs_index = v_max_abs_index;
|
||||||
|
for (int k = 0; k < 4; ++k) {
|
||||||
|
// argmax |inv(A)^T * sign_vector|
|
||||||
|
v = dec.transpose().solve(sign_vector);
|
||||||
|
v.cwiseAbs().maxCoeff(&v_max_abs_index);
|
||||||
|
if (v_max_abs_index == old_v_max_abs_index) {
|
||||||
|
// Break if the solution stagnated.
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
// Move to the new simplex e_j, where j = v_max_abs_index.
|
||||||
|
v.setZero();
|
||||||
|
v[v_max_abs_index] = 1;
|
||||||
|
v = dec.solve(v); // v = inv(A) * e_j.
|
||||||
|
lower_bound = VectorL1Norm(v);
|
||||||
|
if (lower_bound <= old_lower_bound) {
|
||||||
|
// Break if the gradient step did not increase the lower_bound.
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
sign_vector = (v.array() < 0).select(plus, minus);
|
||||||
|
if (sign_vector == old_sign_vector) {
|
||||||
|
// Break if the solution stagnated.
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
old_sign_vector = sign_vector;
|
||||||
|
old_v_max_abs_index = v_max_abs_index;
|
||||||
|
old_lower_bound = lower_bound;
|
||||||
|
}
|
||||||
|
// The following calculates an independent estimate of ||A||_1 by
|
||||||
|
// multiplying
|
||||||
|
// A by a vector with entries of slowly increasing magnitude and alternating
|
||||||
|
// sign: v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1. This
|
||||||
|
// improvement
|
||||||
|
// to Hager's algorithm above is due to Higham. It was added to make the
|
||||||
|
// algorithm more robust in certain corner cases where large elements in
|
||||||
|
// the matrix might otherwise escape detection due to exact cancellation
|
||||||
|
// (especially when op and op_adjoint correspond to a sequence of
|
||||||
|
// backsubstitutions and permutations), which could cause Hager's algorithm
|
||||||
|
// to vastly underestimate ||A||_1.
|
||||||
|
Scalar alternating_sign = 1;
|
||||||
|
for (int i = 0; i < n; ++i) {
|
||||||
|
v[i] = alternating_sign * static_cast<Scalar>(1) +
|
||||||
|
(static_cast<Scalar>(i) / (static_cast<Scalar>(n - 1)));
|
||||||
|
alternating_sign = -alternating_sign;
|
||||||
|
}
|
||||||
|
v = dec.solve(v);
|
||||||
|
const Scalar alternate_lower_bound =
|
||||||
|
(2 * VectorL1Norm(v)) / (3 * static_cast<Scalar>(n));
|
||||||
|
return numext::maxi(lower_bound, alternate_lower_bound);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// Partial specialization for complex matrices.
|
||||||
|
template <typename Decomposition>
|
||||||
|
struct EstimateInverseL1NormImpl<Decomposition, 1> {
|
||||||
|
typedef typename Decomposition::MatrixType MatrixType;
|
||||||
|
typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
||||||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||||
|
typedef typename internal::plain_col_type<MatrixType>::type Vector;
|
||||||
|
typedef typename internal::plain_col_type<MatrixType, RealScalar>::type
|
||||||
|
RealVector;
|
||||||
|
|
||||||
|
// Shorthand for vector L1 norm in Eigen.
|
||||||
|
inline static RealScalar VectorL1Norm(const Vector& v) {
|
||||||
|
return v.template lpNorm<1>();
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline RealScalar compute(const Decomposition& dec) {
|
||||||
|
const int n = dec.rows();
|
||||||
|
const Vector ones = Vector::Ones(n);
|
||||||
|
Vector v = ones / n;
|
||||||
|
v = dec.solve(v);
|
||||||
|
RealScalar lower_bound = VectorL1Norm(v);
|
||||||
|
if (n == 1) {
|
||||||
|
return lower_bound;
|
||||||
|
}
|
||||||
|
// lower_bound is a lower bound on ||inv(A)||_1 = sup_v ||inv(A) v||_1 /
|
||||||
|
// ||v||_1 and is the objective maximized by the ("super-") gradient ascent
|
||||||
|
// algorithm.
|
||||||
|
// Basic idea: We know that the optimum is achieved at one of the simplices
|
||||||
|
// v = e_i, so in each iteration we follow a super-gradient to move towards
|
||||||
|
// the optimal one.
|
||||||
|
RealScalar old_lower_bound = lower_bound;
|
||||||
|
int v_max_abs_index = -1;
|
||||||
|
int old_v_max_abs_index = v_max_abs_index;
|
||||||
|
for (int k = 0; k < 4; ++k) {
|
||||||
|
// argmax |inv(A)^* * sign_vector|
|
||||||
|
RealVector abs_v = v.cwiseAbs();
|
||||||
|
const Vector psi =
|
||||||
|
(abs_v.array() == 0).select(v.cwiseQuotient(abs_v), ones);
|
||||||
|
v = dec.adjoint().solve(psi);
|
||||||
|
const RealVector z = v.real();
|
||||||
|
z.cwiseAbs().maxCoeff(&v_max_abs_index);
|
||||||
|
if (v_max_abs_index == old_v_max_abs_index) {
|
||||||
|
// Break if the solution stagnated.
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
// Move to the new simplex e_j, where j = v_max_abs_index.
|
||||||
|
v.setZero();
|
||||||
|
v[v_max_abs_index] = 1;
|
||||||
|
v = dec.solve(v); // v = inv(A) * e_j.
|
||||||
|
lower_bound = VectorL1Norm(v);
|
||||||
|
if (lower_bound <= old_lower_bound) {
|
||||||
|
// Break if the gradient step did not increase the lower_bound.
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
old_v_max_abs_index = v_max_abs_index;
|
||||||
|
old_lower_bound = lower_bound;
|
||||||
|
}
|
||||||
|
// The following calculates an independent estimate of ||A||_1 by
|
||||||
|
// multiplying
|
||||||
|
// A by a vector with entries of slowly increasing magnitude and alternating
|
||||||
|
// sign: v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1. This
|
||||||
|
// improvement
|
||||||
|
// to Hager's algorithm above is due to Higham. It was added to make the
|
||||||
|
// algorithm more robust in certain corner cases where large elements in
|
||||||
|
// the matrix might otherwise escape detection due to exact cancellation
|
||||||
|
// (especially when op and op_adjoint correspond to a sequence of
|
||||||
|
// backsubstitutions and permutations), which could cause Hager's algorithm
|
||||||
|
// to vastly underestimate ||A||_1.
|
||||||
|
RealScalar alternating_sign = 1;
|
||||||
|
for (int i = 0; i < n; ++i) {
|
||||||
|
v[i] = alternating_sign * static_cast<RealScalar>(1) +
|
||||||
|
(static_cast<RealScalar>(i) / (static_cast<RealScalar>(n - 1)));
|
||||||
|
alternating_sign = -alternating_sign;
|
||||||
|
}
|
||||||
|
v = dec.solve(v);
|
||||||
|
const RealScalar alternate_lower_bound =
|
||||||
|
(2 * VectorL1Norm(v)) / (3 * static_cast<RealScalar>(n));
|
||||||
|
return numext::maxi(lower_bound, alternate_lower_bound);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace internal
|
||||||
|
} // namespace Eigen
|
||||||
|
|
||||||
|
#endif
|
@ -231,6 +231,15 @@ template<typename _MatrixType> class FullPivLU
|
|||||||
return Solve<FullPivLU, Rhs>(*this, b.derived());
|
return Solve<FullPivLU, Rhs>(*this, b.derived());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** \returns an estimate of the reciprocal condition number of the matrix of which *this is
|
||||||
|
the LU decomposition.
|
||||||
|
*/
|
||||||
|
inline RealScalar rcond() const
|
||||||
|
{
|
||||||
|
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
||||||
|
return ConditionEstimator<FullPivLU<_MatrixType> >::rcond(m_l1_norm, *this);
|
||||||
|
}
|
||||||
|
|
||||||
/** \returns the determinant of the matrix of which
|
/** \returns the determinant of the matrix of which
|
||||||
* *this is the LU decomposition. It has only linear complexity
|
* *this is the LU decomposition. It has only linear complexity
|
||||||
* (that is, O(n) where n is the dimension of the square matrix)
|
* (that is, O(n) where n is the dimension of the square matrix)
|
||||||
@ -410,6 +419,7 @@ template<typename _MatrixType> class FullPivLU
|
|||||||
IntColVectorType m_rowsTranspositions;
|
IntColVectorType m_rowsTranspositions;
|
||||||
IntRowVectorType m_colsTranspositions;
|
IntRowVectorType m_colsTranspositions;
|
||||||
Index m_det_pq, m_nonzero_pivots;
|
Index m_det_pq, m_nonzero_pivots;
|
||||||
|
RealScalar m_l1_norm;
|
||||||
RealScalar m_maxpivot, m_prescribedThreshold;
|
RealScalar m_maxpivot, m_prescribedThreshold;
|
||||||
bool m_isInitialized, m_usePrescribedThreshold;
|
bool m_isInitialized, m_usePrescribedThreshold;
|
||||||
};
|
};
|
||||||
@ -455,11 +465,12 @@ FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const EigenBase<InputType>
|
|||||||
// the permutations are stored as int indices, so just to be sure:
|
// the permutations are stored as int indices, so just to be sure:
|
||||||
eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest());
|
eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest());
|
||||||
|
|
||||||
m_isInitialized = true;
|
|
||||||
m_lu = matrix.derived();
|
m_lu = matrix.derived();
|
||||||
|
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
|
||||||
|
|
||||||
computeInPlace();
|
computeInPlace();
|
||||||
|
|
||||||
|
m_isInitialized = true;
|
||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -76,7 +76,6 @@ template<typename _MatrixType> class PartialPivLU
|
|||||||
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
|
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
|
||||||
typedef typename MatrixType::PlainObject PlainObject;
|
typedef typename MatrixType::PlainObject PlainObject;
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* \brief Default Constructor.
|
* \brief Default Constructor.
|
||||||
*
|
*
|
||||||
@ -152,6 +151,15 @@ template<typename _MatrixType> class PartialPivLU
|
|||||||
return Solve<PartialPivLU, Rhs>(*this, b.derived());
|
return Solve<PartialPivLU, Rhs>(*this, b.derived());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** \returns an estimate of the reciprocal condition number of the matrix of which *this is
|
||||||
|
the LU decomposition.
|
||||||
|
*/
|
||||||
|
inline RealScalar rcond() const
|
||||||
|
{
|
||||||
|
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
||||||
|
return ConditionEstimator<PartialPivLU<_MatrixType> >::rcond(m_l1_norm, *this);
|
||||||
|
}
|
||||||
|
|
||||||
/** \returns the inverse of the matrix of which *this is the LU decomposition.
|
/** \returns the inverse of the matrix of which *this is the LU decomposition.
|
||||||
*
|
*
|
||||||
* \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
|
* \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
|
||||||
@ -178,7 +186,7 @@ template<typename _MatrixType> class PartialPivLU
|
|||||||
*
|
*
|
||||||
* \sa MatrixBase::determinant()
|
* \sa MatrixBase::determinant()
|
||||||
*/
|
*/
|
||||||
typename internal::traits<MatrixType>::Scalar determinant() const;
|
Scalar determinant() const;
|
||||||
|
|
||||||
MatrixType reconstructedMatrix() const;
|
MatrixType reconstructedMatrix() const;
|
||||||
|
|
||||||
@ -247,6 +255,7 @@ template<typename _MatrixType> class PartialPivLU
|
|||||||
PermutationType m_p;
|
PermutationType m_p;
|
||||||
TranspositionType m_rowsTranspositions;
|
TranspositionType m_rowsTranspositions;
|
||||||
Index m_det_p;
|
Index m_det_p;
|
||||||
|
RealScalar m_l1_norm;
|
||||||
bool m_isInitialized;
|
bool m_isInitialized;
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -256,6 +265,7 @@ PartialPivLU<MatrixType>::PartialPivLU()
|
|||||||
m_p(),
|
m_p(),
|
||||||
m_rowsTranspositions(),
|
m_rowsTranspositions(),
|
||||||
m_det_p(0),
|
m_det_p(0),
|
||||||
|
m_l1_norm(0),
|
||||||
m_isInitialized(false)
|
m_isInitialized(false)
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
@ -266,6 +276,7 @@ PartialPivLU<MatrixType>::PartialPivLU(Index size)
|
|||||||
m_p(size),
|
m_p(size),
|
||||||
m_rowsTranspositions(size),
|
m_rowsTranspositions(size),
|
||||||
m_det_p(0),
|
m_det_p(0),
|
||||||
|
m_l1_norm(0),
|
||||||
m_isInitialized(false)
|
m_isInitialized(false)
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
@ -277,6 +288,7 @@ PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix)
|
|||||||
m_p(matrix.rows()),
|
m_p(matrix.rows()),
|
||||||
m_rowsTranspositions(matrix.rows()),
|
m_rowsTranspositions(matrix.rows()),
|
||||||
m_det_p(0),
|
m_det_p(0),
|
||||||
|
m_l1_norm(0),
|
||||||
m_isInitialized(false)
|
m_isInitialized(false)
|
||||||
{
|
{
|
||||||
compute(matrix.derived());
|
compute(matrix.derived());
|
||||||
@ -467,6 +479,7 @@ PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const EigenBase<Inpu
|
|||||||
eigen_assert(matrix.rows()<NumTraits<int>::highest());
|
eigen_assert(matrix.rows()<NumTraits<int>::highest());
|
||||||
|
|
||||||
m_lu = matrix.derived();
|
m_lu = matrix.derived();
|
||||||
|
m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
|
||||||
|
|
||||||
eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
|
eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
|
||||||
const Index size = matrix.rows();
|
const Index size = matrix.rows();
|
||||||
@ -484,7 +497,7 @@ PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const EigenBase<Inpu
|
|||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
|
typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
|
||||||
{
|
{
|
||||||
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
|
||||||
return Scalar(m_det_p) * m_lu.diagonal().prod();
|
return Scalar(m_det_p) * m_lu.diagonal().prod();
|
||||||
|
22
test/lu.cpp
22
test/lu.cpp
@ -11,6 +11,11 @@
|
|||||||
#include <Eigen/LU>
|
#include <Eigen/LU>
|
||||||
using namespace std;
|
using namespace std;
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
|
||||||
|
return m.cwiseAbs().colwise().sum().maxCoeff();
|
||||||
|
}
|
||||||
|
|
||||||
template<typename MatrixType> void lu_non_invertible()
|
template<typename MatrixType> void lu_non_invertible()
|
||||||
{
|
{
|
||||||
typedef typename MatrixType::Index Index;
|
typedef typename MatrixType::Index Index;
|
||||||
@ -143,7 +148,13 @@ template<typename MatrixType> void lu_invertible()
|
|||||||
m3 = MatrixType::Random(size,size);
|
m3 = MatrixType::Random(size,size);
|
||||||
m2 = lu.solve(m3);
|
m2 = lu.solve(m3);
|
||||||
VERIFY_IS_APPROX(m3, m1*m2);
|
VERIFY_IS_APPROX(m3, m1*m2);
|
||||||
VERIFY_IS_APPROX(m2, lu.inverse()*m3);
|
MatrixType m1_inverse = lu.inverse();
|
||||||
|
VERIFY_IS_APPROX(m2, m1_inverse*m3);
|
||||||
|
|
||||||
|
// Test condition number estimation.
|
||||||
|
RealScalar rcond = RealScalar(1) / matrix_l1_norm(m1) / matrix_l1_norm(m1_inverse);
|
||||||
|
// Verify that the estimate is within a factor of 10 of the truth.
|
||||||
|
VERIFY(lu.rcond() > rcond / 10 && lu.rcond() < rcond * 10);
|
||||||
|
|
||||||
// test solve with transposed
|
// test solve with transposed
|
||||||
lu.template _solve_impl_transposed<false>(m3, m2);
|
lu.template _solve_impl_transposed<false>(m3, m2);
|
||||||
@ -170,6 +181,7 @@ template<typename MatrixType> void lu_partial_piv()
|
|||||||
PartialPivLU.h
|
PartialPivLU.h
|
||||||
*/
|
*/
|
||||||
typedef typename MatrixType::Index Index;
|
typedef typename MatrixType::Index Index;
|
||||||
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||||||
Index size = internal::random<Index>(1,4);
|
Index size = internal::random<Index>(1,4);
|
||||||
|
|
||||||
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
||||||
@ -181,7 +193,13 @@ template<typename MatrixType> void lu_partial_piv()
|
|||||||
m3 = MatrixType::Random(size,size);
|
m3 = MatrixType::Random(size,size);
|
||||||
m2 = plu.solve(m3);
|
m2 = plu.solve(m3);
|
||||||
VERIFY_IS_APPROX(m3, m1*m2);
|
VERIFY_IS_APPROX(m3, m1*m2);
|
||||||
VERIFY_IS_APPROX(m2, plu.inverse()*m3);
|
MatrixType m1_inverse = plu.inverse();
|
||||||
|
VERIFY_IS_APPROX(m2, m1_inverse*m3);
|
||||||
|
|
||||||
|
// Test condition number estimation.
|
||||||
|
RealScalar rcond = RealScalar(1) / matrix_l1_norm(m1) / matrix_l1_norm(m1_inverse);
|
||||||
|
// Verify that the estimate is within a factor of 10 of the truth.
|
||||||
|
VERIFY(plu.rcond() > rcond / 10 && plu.rcond() < rcond * 10);
|
||||||
|
|
||||||
// test solve with transposed
|
// test solve with transposed
|
||||||
plu.template _solve_impl_transposed<false>(m3, m2);
|
plu.template _solve_impl_transposed<false>(m3, m2);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user