mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-23 10:09:36 +08:00
extend the quick ref table page
This commit is contained in:
parent
5c866f2d8c
commit
1c783e252f
@ -8,6 +8,9 @@ namespace Eigen {
|
||||
- \ref QuickRef_Map
|
||||
- \ref QuickRef_ArithmeticOperators
|
||||
- \ref QuickRef_Coeffwise
|
||||
- \ref QuickRef_Reductions
|
||||
- \ref QuickRef_Blocks
|
||||
- \ref QuickRef_DiagTriSymm
|
||||
\n
|
||||
|
||||
<hr>
|
||||
@ -333,6 +336,12 @@ row2 = row1 * mat1; row1 *= mat1;
|
||||
mat3 = mat1 * mat2; mat3 *= mat1; \endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
transpose et adjoint \matrixworld</td><td>\code
|
||||
mat1 = mat2.transpose(); mat1.transposeInPlace();
|
||||
mat1 = mat2.adjoint(); mat1.adjointInPlace();
|
||||
\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
\link MatrixBase::dot() dot \endlink \& inner products \matrixworld</td><td>\code
|
||||
scalar = col1.adjoint() * col2;
|
||||
scalar = (col1.adjoint() * col2).value();
|
||||
@ -342,6 +351,13 @@ scalar = vec1.dot(vec2);\endcode
|
||||
outer product \matrixworld</td><td>\code
|
||||
mat = col1 * col2.transpose();\endcode
|
||||
</td></tr>
|
||||
|
||||
<tr><td>
|
||||
\link MatrixBase::norm() norm \endlink and \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code
|
||||
scalar = vec1.norm(); scalar = vec1.squaredNorm()
|
||||
vec2 = vec1.normalized(); vec1.normalize(); // inplace \endcode
|
||||
</td></tr>
|
||||
|
||||
<tr><td>
|
||||
\link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code
|
||||
#include <Eigen/Geometry>
|
||||
@ -403,13 +419,8 @@ array1.tan() std::tan(array1)
|
||||
</td></tr>
|
||||
</table>
|
||||
|
||||
*/
|
||||
|
||||
// FIXME I stopped here
|
||||
|
||||
/**
|
||||
<a href="#" class="top">top</a>
|
||||
\section TutorialCoreReductions Reductions
|
||||
\section QuickRef_Reductions Reductions
|
||||
|
||||
Eigen provides several reduction methods such as:
|
||||
\link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink,
|
||||
@ -440,8 +451,7 @@ Also note that maxCoeff and minCoeff can takes optional arguments returning the
|
||||
|
||||
|
||||
|
||||
|
||||
<a href="#" class="top">top</a>\section TutorialCoreMatrixBlocks Matrix blocks
|
||||
<a href="#" class="top">top</a>\section QuickRef_Blocks Matrix blocks
|
||||
|
||||
Read-write access to a \link DenseBase::col(int) column \endlink
|
||||
or a \link DenseBase::row(int) row \endlink of a matrix (or array):
|
||||
@ -469,8 +479,8 @@ Read-write access to sub-matrices:</td><td></td><td></td></tr>
|
||||
\link DenseBase::block(int,int,int,int) (more) \endlink</td>
|
||||
<td>\code mat1.block<rows,cols>(i,j)\endcode
|
||||
\link DenseBase::block(int,int) (more) \endlink</td>
|
||||
<td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr><tr>
|
||||
<td>\code
|
||||
<td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr>
|
||||
<tr><td>\code
|
||||
mat1.topLeftCorner(rows,cols)
|
||||
mat1.topRightCorner(rows,cols)
|
||||
mat1.bottomLeftCorner(rows,cols)
|
||||
@ -481,168 +491,199 @@ Read-write access to sub-matrices:</td><td></td><td></td></tr>
|
||||
mat1.bottomLeftCorner<rows,cols>()
|
||||
mat1.bottomRightCorner<rows,cols>()\endcode
|
||||
<td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr>
|
||||
</table>
|
||||
|
||||
|
||||
|
||||
<a href="#" class="top">top</a>\section TutorialCoreDiagonalMatrices Diagonal matrices
|
||||
\matrixworld
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr><td>
|
||||
\link MatrixBase::asDiagonal() make a diagonal matrix \endlink from a vector \n
|
||||
<em class="note">this product is automatically optimized !</em></td><td>\code
|
||||
mat3 = mat1 * vec2.asDiagonal();\endcode
|
||||
</td></tr>
|
||||
<tr><td>Access \link MatrixBase::diagonal() the diagonal of a matrix \endlink as a vector (read/write)</td>
|
||||
<tr><td>\code
|
||||
mat1.topRows(rows)
|
||||
mat1.bottomRows(rows)
|
||||
mat1.leftCols(cols)
|
||||
mat1.rightCols(cols)\endcode
|
||||
<td>\code
|
||||
vec1 = mat1.diagonal();
|
||||
mat1.diagonal() = vec1;
|
||||
\endcode
|
||||
</td>
|
||||
mat1.topRows<rows>()
|
||||
mat1.bottomRows<rows>()
|
||||
mat1.leftCols<cols>()
|
||||
mat1.rightCols<cols>()\endcode
|
||||
<td>specialized versions of block() when the block fit two corners</td></tr>
|
||||
</table>
|
||||
|
||||
|
||||
|
||||
|
||||
<a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices
|
||||
(matrix world \matrixworld)
|
||||
|
||||
\subsection QuickRef_Diagonal Diagonal matrices
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr><td>
|
||||
\link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code
|
||||
mat1 = vec1.asDiagonal();\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Declare a diagonal matrix</td><td>\code
|
||||
DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
|
||||
diag1.diagonal() = vector;\endcode
|
||||
</td></tr>
|
||||
<tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td>
|
||||
<td>\code
|
||||
vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal
|
||||
vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal
|
||||
vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal
|
||||
vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal
|
||||
vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal
|
||||
\endcode</td>
|
||||
</tr>
|
||||
|
||||
<tr><td>Optimized products and inverse</td>
|
||||
<td>\code
|
||||
mat3 = scalar * diag1 * mat1;
|
||||
mat3 += scalar * mat1 * vec1.asDiagonal();
|
||||
mat3 = vec1.asDiagonal().inverse() * mat1
|
||||
mat3 = mat1 * diag1.inverse()
|
||||
\endcode</td>
|
||||
</tr>
|
||||
|
||||
</table>
|
||||
|
||||
\subsection QuickRef_TriangularView Triangular views
|
||||
|
||||
|
||||
<a href="#" class="top">top</a>
|
||||
\section TutorialCoreTransposeAdjoint Transpose and Adjoint operations
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr><td>
|
||||
\link DenseBase::transpose() transposition \endlink (read-write)</td><td>\code
|
||||
mat3 = mat1.transpose() * mat2;
|
||||
mat3.transpose() = mat1 * mat2.transpose();
|
||||
\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
\link MatrixBase::adjoint() adjoint \endlink (read only) \matrixworld\n</td><td>\code
|
||||
mat3 = mat1.adjoint() * mat2;
|
||||
\endcode
|
||||
</td></tr>
|
||||
</table>
|
||||
|
||||
|
||||
|
||||
<a href="#" class="top">top</a>
|
||||
\section TutorialCoreDotNorm Dot-product, vector norm, normalization \matrixworld
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr><td>
|
||||
\link MatrixBase::dot() Dot-product \endlink of two vectors
|
||||
</td><td>\code vec1.dot(vec2);\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
\link MatrixBase::norm() norm \endlink of a vector \n
|
||||
\link MatrixBase::squaredNorm() squared norm \endlink of a vector
|
||||
</td><td>\code vec.norm(); \endcode \n \code vec.squaredNorm() \endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
returns a \link MatrixBase::normalized() normalized \endlink vector \n
|
||||
\link MatrixBase::normalize() normalize \endlink a vector
|
||||
</td><td>\code
|
||||
vec3 = vec1.normalized();
|
||||
vec1.normalize();\endcode
|
||||
</td></tr>
|
||||
</table>
|
||||
|
||||
|
||||
|
||||
<a href="#" class="top">top</a>
|
||||
\section TutorialCoreTriangularMatrix Dealing with triangular matrices \matrixworld
|
||||
|
||||
Currently, Eigen does not provide any explicit triangular matrix, with storage class. Instead, we
|
||||
can reference a triangular part of a square matrix or expression to perform special treatment on it.
|
||||
This is achieved by the class TriangularView and the MatrixBase::triangularView template function.
|
||||
Note that the opposite triangular part of the matrix is never referenced, and so it can, e.g., store
|
||||
a second triangular matrix.
|
||||
TriangularView allows to get views on a triangular part of a dense matrix and perform optimized operations on it. The opposite triangular is never referenced and can be
|
||||
used to store other information.
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr><td>
|
||||
Reference a read/write triangular part of a given \n
|
||||
matrix (or expression) m with optional unit diagonal:
|
||||
</td><td>\code
|
||||
m.triangularView<Eigen::UpperTriangular>()
|
||||
m.triangularView<Eigen::UnitUpperTriangular>()
|
||||
m.triangularView<Eigen::LowerTriangular>()
|
||||
m.triangularView<Eigen::UnitLowerTriangular>()\endcode
|
||||
m.triangularView<Xxx>()
|
||||
\endcode \n
|
||||
\c Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Writing to a specific triangular part:\n (only the referenced triangular part is evaluated)
|
||||
</td><td>\code
|
||||
m1.triangularView<Eigen::LowerTriangular>() = m2 + m3 \endcode
|
||||
m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Conversion to a dense matrix setting the opposite triangular part to zero:
|
||||
</td><td>\code
|
||||
m2 = m1.triangularView<Eigen::UnitUpperTriangular>()\endcode
|
||||
m2 = m1.triangularView<Eigen::UnitUpper>()\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Products:
|
||||
</td><td>\code
|
||||
m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpperTriangular>() * m2
|
||||
m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::LowerTriangular>() \endcode
|
||||
m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2
|
||||
m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Solving linear equations:\n(\f$ m_2 := m_1^{-1} m_2 \f$)
|
||||
</td><td>\code
|
||||
m1.triangularView<Eigen::UnitLowerTriangular>().solveInPlace(m2)
|
||||
m1.adjoint().triangularView<Eigen::UpperTriangular>().solveInPlace(m2)\endcode
|
||||
m1.triangularView<Eigen::UnitLower>().solveInPlace(m2)
|
||||
m1.adjoint().triangularView<Eigen::Upper>().solveInPlace(m2)\endcode
|
||||
</td></tr>
|
||||
</table>
|
||||
|
||||
|
||||
|
||||
<a href="#" class="top">top</a>
|
||||
\section TutorialCoreSelfadjointMatrix Dealing with symmetric/selfadjoint matrices \matrixworld
|
||||
\subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views
|
||||
|
||||
Just as for triangular matrix, you can reference any triangular part of a square matrix to see it a selfadjoint
|
||||
matrix to perform special and optimized operations. Again the opposite triangular is never referenced and can be
|
||||
matrix and perform special and optimized operations. Again the opposite triangular is never referenced and can be
|
||||
used to store other information.
|
||||
|
||||
<table class="tutorial_code">
|
||||
<tr><td>
|
||||
Conversion to a dense matrix:
|
||||
</td><td>\code
|
||||
m2 = m.selfadjointView<Eigen::LowerTriangular>();\endcode
|
||||
m2 = m.selfadjointView<Eigen::Lower>();\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Product with another general matrix or vector:
|
||||
</td><td>\code
|
||||
m3 = s1 * m1.conjugate().selfadjointView<Eigen::UpperTriangular>() * m3;
|
||||
m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::UpperTriangular>();\endcode
|
||||
m3 = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3;
|
||||
m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Rank 1 and rank K update:
|
||||
</td><td>\code
|
||||
// fast version of m1 += s1 * m2 * m2.adjoint():
|
||||
m1.selfadjointView<Eigen::UpperTriangular>().rankUpdate(m2,s1);
|
||||
m1.selfadjointView<Eigen::Upper>().rankUpdate(m2,s1);
|
||||
// fast version of m1 -= m2.adjoint() * m2:
|
||||
m1.selfadjointView<Eigen::LowerTriangular>().rankUpdate(m2.adjoint(),-1); \endcode
|
||||
m1.selfadjointView<Eigen::Lower>().rankUpdate(m2.adjoint(),-1); \endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Rank 2 update: (\f$ m += s u v^* + s v u^* \f$)
|
||||
</td><td>\code
|
||||
m.selfadjointView<Eigen::UpperTriangular>().rankUpdate(u,v,s);
|
||||
m.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s);
|
||||
\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Solving linear equations:\n(\f$ m_2 := m_1^{-1} m_2 \f$)
|
||||
</td><td>\code
|
||||
// via a standard Cholesky factorization
|
||||
m1.selfadjointView<Eigen::UpperTriangular>().llt().solveInPlace(m2);
|
||||
m1.selfadjointView<Eigen::Upper>().llt().solveInPlace(m2);
|
||||
// via a Cholesky factorization with pivoting
|
||||
m1.selfadjointView<Eigen::UpperTriangular>().ldlt().solveInPlace(m2);
|
||||
m1.selfadjointView<Eigen::Upper>().ldlt().solveInPlace(m2);
|
||||
\endcode
|
||||
</td></tr>
|
||||
</table>
|
||||
|
||||
|
||||
<a href="#" class="top">top</a>
|
||||
\section TutorialCoreSpecialTopics Special Topics
|
||||
|
||||
\ref TopicLazyEvaluation "Lazy Evaluation and Aliasing": Thanks to expression templates, Eigen is able to apply lazy evaluation wherever that is beneficial.
|
||||
|
||||
*/
|
||||
|
||||
/*
|
||||
<table class="tutorial_code">
|
||||
<tr><td>
|
||||
\link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code
|
||||
mat1 = vec1.asDiagonal();\endcode
|
||||
</td></tr>
|
||||
<tr><td>
|
||||
Declare a diagonal matrix</td><td>\code
|
||||
DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
|
||||
diag1.diagonal() = vector;\endcode
|
||||
</td></tr>
|
||||
<tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td>
|
||||
<td>\code
|
||||
vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal
|
||||
vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal
|
||||
vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal
|
||||
vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal
|
||||
vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal
|
||||
\endcode</td>
|
||||
</tr>
|
||||
|
||||
<tr><td>View on a triangular part of a matrix (read/write)</td>
|
||||
<td>\code
|
||||
mat2 = mat1.triangularView<Xxx>();
|
||||
// Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower
|
||||
mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced
|
||||
\endcode</td></tr>
|
||||
|
||||
<tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td>
|
||||
<td>\code
|
||||
mat2 = mat1.selfadjointView<Xxx>(); // Xxx = Upper or Lower
|
||||
mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint(); // evaluated and write to the upper triangular part only
|
||||
\endcode</td></tr>
|
||||
|
||||
</table>
|
||||
|
||||
Optimized products:
|
||||
\code
|
||||
mat3 += scalar * vec1.asDiagonal() * mat1
|
||||
mat3 += scalar * mat1 * vec1.asDiagonal()
|
||||
mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2
|
||||
mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>()
|
||||
mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2
|
||||
mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>()
|
||||
mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2);
|
||||
mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar);
|
||||
\endcode
|
||||
|
||||
Inverse products: (all are optimized)
|
||||
\code
|
||||
mat3 = vec1.asDiagonal().inverse() * mat1
|
||||
mat3 = mat1 * diag1.inverse()
|
||||
mat1.triangularView<Xxx>().solveInPlace(mat2)
|
||||
mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2)
|
||||
mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2)
|
||||
\endcode
|
||||
|
||||
*/
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user