Vectorize any() / all()

This commit is contained in:
Charles Schlosser 2023-03-06 23:54:02 +00:00 committed by Rasmus Munk Larsen
parent cb8e6d4975
commit 1ce8b25825
5 changed files with 599 additions and 443 deletions

View File

@ -373,7 +373,6 @@ using std::ptrdiff_t;
#include "src/Core/arch/AVX512/GemmKernel.h"
#endif
#include "src/Core/BooleanRedux.h"
#include "src/Core/Select.h"
#include "src/Core/VectorwiseOp.h"
#include "src/Core/PartialReduxEvaluator.h"

View File

@ -1,166 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ALLANDANY_H
#define EIGEN_ALLANDANY_H
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template<typename Derived, int UnrollCount, int InnerSize>
struct all_unroller
{
enum {
IsRowMajor = (int(Derived::Flags) & int(RowMajor)),
i = (UnrollCount-1) / InnerSize,
j = (UnrollCount-1) % InnerSize
};
EIGEN_DEVICE_FUNC static inline bool run(const Derived &mat)
{
return all_unroller<Derived, UnrollCount-1, InnerSize>::run(mat) && mat.coeff(IsRowMajor ? i : j, IsRowMajor ? j : i) != typename Derived::CoeffReturnType(0);
}
};
template<typename Derived, int InnerSize>
struct all_unroller<Derived, 0, InnerSize>
{
EIGEN_DEVICE_FUNC static inline bool run(const Derived &/*mat*/) { return true; }
};
template<typename Derived, int InnerSize>
struct all_unroller<Derived, Dynamic, InnerSize>
{
EIGEN_DEVICE_FUNC static inline bool run(const Derived &) { return false; }
};
template<typename Derived, int UnrollCount, int InnerSize>
struct any_unroller
{
enum {
IsRowMajor = (int(Derived::Flags) & int(RowMajor)),
i = (UnrollCount-1) / InnerSize,
j = (UnrollCount-1) % InnerSize
};
EIGEN_DEVICE_FUNC static inline bool run(const Derived &mat)
{
return any_unroller<Derived, UnrollCount-1, InnerSize>::run(mat) || mat.coeff(IsRowMajor ? i : j, IsRowMajor ? j : i) != typename Derived::CoeffReturnType(0);
}
};
template<typename Derived, int InnerSize>
struct any_unroller<Derived, 0, InnerSize>
{
EIGEN_DEVICE_FUNC static inline bool run(const Derived & /*mat*/) { return false; }
};
template<typename Derived, int InnerSize>
struct any_unroller<Derived, Dynamic, InnerSize>
{
EIGEN_DEVICE_FUNC static inline bool run(const Derived &) { return false; }
};
} // end namespace internal
/** \returns true if all coefficients are true
*
* Example: \include MatrixBase_all.cpp
* Output: \verbinclude MatrixBase_all.out
*
* \sa any(), Cwise::operator<()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC inline bool DenseBase<Derived>::all() const
{
typedef internal::evaluator<Derived> Evaluator;
enum {
unroll = SizeAtCompileTime != Dynamic
&& SizeAtCompileTime * (int(Evaluator::CoeffReadCost) + int(NumTraits<Scalar>::AddCost)) <= EIGEN_UNROLLING_LIMIT,
};
Evaluator evaluator(derived());
if(unroll)
return internal::all_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic, InnerSizeAtCompileTime>::run(evaluator);
else
{
for(Index i = 0; i < derived().outerSize(); ++i)
for(Index j = 0; j < derived().innerSize(); ++j)
if (evaluator.coeff(IsRowMajor ? i : j, IsRowMajor ? j : i) == Scalar(0)) return false;
return true;
}
}
/** \returns true if at least one coefficient is true
*
* \sa all()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC inline bool DenseBase<Derived>::any() const
{
typedef internal::evaluator<Derived> Evaluator;
enum {
unroll = SizeAtCompileTime != Dynamic
&& SizeAtCompileTime * (int(Evaluator::CoeffReadCost) + int(NumTraits<Scalar>::AddCost)) <= EIGEN_UNROLLING_LIMIT,
};
Evaluator evaluator(derived());
if(unroll)
return internal::any_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic, InnerSizeAtCompileTime>::run(evaluator);
else
{
for(Index i = 0; i < derived().outerSize(); ++i)
for(Index j = 0; j < derived().innerSize(); ++j)
if (evaluator.coeff(IsRowMajor ? i : j, IsRowMajor ? j : i) != Scalar(0)) return true;
return false;
}
}
/** \returns the number of coefficients which evaluate to true
*
* \sa all(), any()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC inline Eigen::Index DenseBase<Derived>::count() const
{
return derived().template cast<bool>().template cast<Index>().sum();
}
/** \returns true is \c *this contains at least one Not A Number (NaN).
*
* \sa allFinite()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC inline bool DenseBase<Derived>::hasNaN() const
{
#if EIGEN_COMP_MSVC || (defined __FAST_MATH__)
return derived().array().isNaN().any();
#else
return !((derived().array()==derived().array()).all());
#endif
}
/** \returns true if \c *this contains only finite numbers, i.e., no NaN and no +/-INF values.
*
* \sa hasNaN()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC inline bool DenseBase<Derived>::allFinite() const
{
#if EIGEN_COMP_MSVC || (defined __FAST_MATH__)
return derived().array().isFinite().all();
#else
return !((derived()-derived()).hasNaN());
#endif
}
} // end namespace Eigen
#endif // EIGEN_ALLANDANY_H

View File

@ -16,105 +16,295 @@ namespace Eigen {
namespace internal {
template<typename Visitor, typename Derived, int UnrollCount, bool Vectorize=((Derived::PacketAccess!=0) && functor_traits<Visitor>::PacketAccess)>
template <typename Visitor, typename Derived, int UnrollCount,
bool Vectorize = (Derived::PacketAccess && functor_traits<Visitor>::PacketAccess), bool LinearAccess = false,
bool ShortCircuitEvaluation = false>
struct visitor_impl;
template<typename Visitor, typename Derived, int UnrollCount>
struct visitor_impl<Visitor, Derived, UnrollCount, false>
{
enum {
col = Derived::IsRowMajor ? (UnrollCount-1) % Derived::ColsAtCompileTime
: (UnrollCount-1) / Derived::RowsAtCompileTime,
row = Derived::IsRowMajor ? (UnrollCount-1) / Derived::ColsAtCompileTime
: (UnrollCount-1) % Derived::RowsAtCompileTime
};
EIGEN_DEVICE_FUNC
static inline void run(const Derived &mat, Visitor& visitor)
{
visitor_impl<Visitor, Derived, UnrollCount-1>::run(mat, visitor);
visitor(mat.coeff(row, col), row, col);
template <typename Visitor, bool ShortCircuitEvaluation = false>
struct short_circuit_eval_impl {
// if short circuit evaluation is not used, do nothing
static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(const Visitor&) { return false; }
};
template <typename Visitor>
struct short_circuit_eval_impl<Visitor, true> {
// if short circuit evaluation is used, check the visitor
static EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(const Visitor& visitor) {
return visitor.done();
}
};
template<typename Visitor, typename Derived>
struct visitor_impl<Visitor, Derived, 1, false>
{
EIGEN_DEVICE_FUNC
static inline void run(const Derived &mat, Visitor& visitor)
// unrolled inner-outer traversal
template <typename Visitor, typename Derived, int UnrollCount, bool Vectorize, bool ShortCircuitEvaluation>
struct visitor_impl<Visitor, Derived, UnrollCount, Vectorize, false, ShortCircuitEvaluation> {
// don't use short circuit evaulation for unrolled version
using Scalar = typename Derived::Scalar;
using Packet = typename packet_traits<Scalar>::type;
static constexpr bool RowMajor = Derived::IsRowMajor;
static constexpr int RowsAtCompileTime = Derived::RowsAtCompileTime;
static constexpr int ColsAtCompileTime = Derived::ColsAtCompileTime;
static constexpr int PacketSize = packet_traits<Scalar>::size;
static constexpr bool CanVectorize(int K) {
constexpr int InnerSizeAtCompileTime = RowMajor ? ColsAtCompileTime : RowsAtCompileTime;
return Vectorize && (InnerSizeAtCompileTime - (K % InnerSizeAtCompileTime) >= PacketSize);
}
template <int K = 0,
bool Empty = (K == UnrollCount),
std::enable_if_t<Empty, bool> = true>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived&, Visitor&) {}
template <int K = 0,
bool Empty = (K == UnrollCount),
bool Initialize = (K == 0),
bool DoVectorOp = CanVectorize(K),
std::enable_if_t<!Empty && Initialize && !DoVectorOp, bool> = true>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor)
{
return visitor.init(mat.coeff(0, 0), 0, 0);
visitor.init(mat.coeff(0, 0), 0, 0);
run<1>(mat, visitor);
}
template <int K = 0,
bool Empty = (K == UnrollCount),
bool Initialize = (K == 0),
bool DoVectorOp = CanVectorize(K),
std::enable_if_t<!Empty && !Initialize && !DoVectorOp, bool> = true>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor)
{
static constexpr int R = RowMajor ? (K / ColsAtCompileTime) : (K % RowsAtCompileTime);
static constexpr int C = RowMajor ? (K % ColsAtCompileTime) : (K / RowsAtCompileTime);
visitor(mat.coeff(R, C), R, C);
run<K + 1>(mat, visitor);
}
template <int K = 0,
bool Empty = (K == UnrollCount),
bool Initialize = (K == 0),
bool DoVectorOp = CanVectorize(K),
std::enable_if_t<!Empty && Initialize && DoVectorOp, bool> = true>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor)
{
Packet P = mat.template packet<Packet>(0, 0);
visitor.initpacket(P, 0, 0);
run<PacketSize>(mat, visitor);
}
template <int K = 0,
bool Empty = (K == UnrollCount),
bool Initialize = (K == 0),
bool DoVectorOp = CanVectorize(K),
std::enable_if_t<!Empty && !Initialize && DoVectorOp, bool> = true>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor)
{
static constexpr int R = RowMajor ? (K / ColsAtCompileTime) : (K % RowsAtCompileTime);
static constexpr int C = RowMajor ? (K % ColsAtCompileTime) : (K / RowsAtCompileTime);
Packet P = mat.template packet<Packet>(R, C);
visitor.packet(P, R, C);
run<K + PacketSize>(mat, visitor);
}
};
// This specialization enables visitors on empty matrices at compile-time
template<typename Visitor, typename Derived>
struct visitor_impl<Visitor, Derived, 0, false> {
EIGEN_DEVICE_FUNC
static inline void run(const Derived &/*mat*/, Visitor& /*visitor*/)
{}
// unrolled linear traversal
template <typename Visitor, typename Derived, int UnrollCount, bool Vectorize, bool ShortCircuitEvaluation>
struct visitor_impl<Visitor, Derived, UnrollCount, Vectorize, true, ShortCircuitEvaluation> {
// don't use short circuit evaulation for unrolled version
using Scalar = typename Derived::Scalar;
using Packet = typename packet_traits<Scalar>::type;
static constexpr int PacketSize = packet_traits<Scalar>::size;
static constexpr bool CanVectorize(int K) {
return Vectorize && ((UnrollCount - K) >= PacketSize);
}
// empty
template <int K = 0,
bool Empty = (K == UnrollCount),
std::enable_if_t<Empty, bool> = true>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived&, Visitor&) {}
// scalar initialization
template <int K = 0,
bool Empty = (K == UnrollCount),
bool Initialize = (K == 0),
bool DoVectorOp = CanVectorize(K),
std::enable_if_t<!Empty && Initialize && !DoVectorOp, bool> = true>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) {
visitor.init(mat.coeff(0), 0);
run<1>(mat, visitor);
}
// scalar iteration
template <int K = 0,
bool Empty = (K == UnrollCount),
bool Initialize = (K == 0),
bool DoVectorOp = CanVectorize(K),
std::enable_if_t<!Empty && !Initialize && !DoVectorOp, bool> = true>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) {
visitor(mat.coeff(K), K);
run<K + 1>(mat, visitor);
}
// vector initialization
template <int K = 0,
bool Empty = (K == UnrollCount),
bool Initialize = (K == 0),
bool DoVectorOp = CanVectorize(K),
std::enable_if_t<!Empty && Initialize && DoVectorOp, bool> = true>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) {
Packet P = mat.template packet<Packet>(0);
visitor.initpacket(P, 0);
run<PacketSize>(mat, visitor);
}
// vector iteration
template <int K = 0,
bool Empty = (K == UnrollCount),
bool Initialize = (K == 0),
bool DoVectorOp = CanVectorize(K),
std::enable_if_t<!Empty && !Initialize && DoVectorOp, bool> = true>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) {
Packet P = mat.template packet<Packet>(K);
visitor.packet(P, K);
run<K + PacketSize>(mat, visitor);
}
};
template<typename Visitor, typename Derived>
struct visitor_impl<Visitor, Derived, Dynamic, /*Vectorize=*/false>
{
EIGEN_DEVICE_FUNC
static inline void run(const Derived& mat, Visitor& visitor)
{
visitor.init(mat.coeff(0,0), 0, 0);
if (Derived::IsRowMajor) {
for(Index i = 1; i < mat.cols(); ++i) {
visitor(mat.coeff(0, i), 0, i);
// dynamic scalar outer-inner traversal
template <typename Visitor, typename Derived, bool ShortCircuitEvaluation>
struct visitor_impl<Visitor, Derived, Dynamic, /*Vectorize=*/false, /*LinearAccess=*/false, ShortCircuitEvaluation> {
using short_circuit = short_circuit_eval_impl<Visitor, ShortCircuitEvaluation>;
static constexpr bool RowMajor = Derived::IsRowMajor;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) {
const Index innerSize = RowMajor ? mat.cols() : mat.rows();
const Index outerSize = RowMajor ? mat.rows() : mat.cols();
if (innerSize == 0 || outerSize == 0) return;
{
visitor.init(mat.coeff(0, 0), 0, 0);
if (short_circuit::run(visitor)) return;
for (Index i = 1; i < innerSize; ++i) {
Index r = RowMajor ? 0 : i;
Index c = RowMajor ? i : 0;
visitor(mat.coeff(r, c), r, c);
if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return;
}
for(Index j = 1; j < mat.rows(); ++j) {
for(Index i = 0; i < mat.cols(); ++i) {
visitor(mat.coeff(j, i), j, i);
}
}
} else {
for(Index i = 1; i < mat.rows(); ++i) {
visitor(mat.coeff(i, 0), i, 0);
}
for(Index j = 1; j < mat.cols(); ++j) {
for(Index i = 0; i < mat.rows(); ++i) {
visitor(mat.coeff(i, j), i, j);
}
}
for (Index j = 1; j < outerSize; j++) {
for (Index i = 0; i < innerSize; ++i) {
Index r = RowMajor ? j : i;
Index c = RowMajor ? i : j;
visitor(mat.coeff(r, c), r, c);
if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return;
}
}
}
};
template<typename Visitor, typename Derived, int UnrollSize>
struct visitor_impl<Visitor, Derived, UnrollSize, /*Vectorize=*/true>
{
typedef typename Derived::Scalar Scalar;
typedef typename packet_traits<Scalar>::type Packet;
// dynamic vectorized outer-inner traversal
template <typename Visitor, typename Derived, bool ShortCircuitEvaluation>
struct visitor_impl<Visitor, Derived, Dynamic, /*Vectorize=*/true, /*LinearAccess=*/false, ShortCircuitEvaluation> {
using Scalar = typename Derived::Scalar;
using Packet = typename packet_traits<Scalar>::type;
static constexpr int PacketSize = packet_traits<Scalar>::size;
using short_circuit = short_circuit_eval_impl<Visitor, ShortCircuitEvaluation>;
static constexpr bool RowMajor = Derived::IsRowMajor;
EIGEN_DEVICE_FUNC
static inline void run(const Derived& mat, Visitor& visitor)
{
const Index PacketSize = packet_traits<Scalar>::size;
visitor.init(mat.coeff(0,0), 0, 0);
if (Derived::IsRowMajor) {
for(Index i = 0; i < mat.rows(); ++i) {
Index j = i == 0 ? 1 : 0;
for(; j+PacketSize-1 < mat.cols(); j += PacketSize) {
Packet p = mat.packet(i, j);
visitor.packet(p, i, j);
}
for(; j < mat.cols(); ++j)
visitor(mat.coeff(i, j), i, j);
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) {
const Index innerSize = RowMajor ? mat.cols() : mat.rows();
const Index outerSize = RowMajor ? mat.rows() : mat.cols();
if (innerSize == 0 || outerSize == 0) return;
{
Index i = 0;
if (innerSize < PacketSize) {
visitor.init(mat.coeff(0, 0), 0, 0);
i = 1;
} else {
Packet p = mat.template packet<Packet>(0, 0);
visitor.initpacket(p, 0, 0);
i = PacketSize;
}
if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return;
for (; i + PacketSize - 1 < innerSize; i += PacketSize) {
Index r = RowMajor ? 0 : i;
Index c = RowMajor ? i : 0;
Packet p = mat.template packet<Packet>(r, c);
visitor.packet(p, r, c);
if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return;
}
for (; i < innerSize; ++i) {
Index r = RowMajor ? 0 : i;
Index c = RowMajor ? i : 0;
visitor(mat.coeff(r, c), r, c);
if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return;
}
}
for (Index j = 1; j < outerSize; j++) {
Index i = 0;
for (; i + PacketSize - 1 < innerSize; i += PacketSize) {
Index r = RowMajor ? j : i;
Index c = RowMajor ? i : j;
Packet p = mat.template packet<Packet>(r, c);
visitor.packet(p, r, c);
if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return;
}
for (; i < innerSize; ++i) {
Index r = RowMajor ? j : i;
Index c = RowMajor ? i : j;
visitor(mat.coeff(r, c), r, c);
if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return;
}
}
}
};
// dynamic scalar linear traversal
template <typename Visitor, typename Derived, bool ShortCircuitEvaluation>
struct visitor_impl<Visitor, Derived, Dynamic, /*Vectorize=*/false, /*LinearAccess=*/true, ShortCircuitEvaluation> {
using short_circuit = short_circuit_eval_impl<Visitor, ShortCircuitEvaluation>;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) {
const Index size = mat.size();
if (size == 0) return;
visitor.init(mat.coeff(0), 0);
if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return;
for (Index k = 1; k < size; k++) {
visitor(mat.coeff(k), k);
if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return;
}
}
};
// dynamic vectorized linear traversal
template <typename Visitor, typename Derived, bool ShortCircuitEvaluation>
struct visitor_impl<Visitor, Derived, Dynamic, /*Vectorize=*/true, /*LinearAccess=*/true, ShortCircuitEvaluation> {
using Scalar = typename Derived::Scalar;
using Packet = typename packet_traits<Scalar>::type;
static constexpr int PacketSize = packet_traits<Scalar>::size;
using short_circuit = short_circuit_eval_impl<Visitor, ShortCircuitEvaluation>;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const Derived& mat, Visitor& visitor) {
const Index size = mat.size();
if (size == 0) return;
Index k = 0;
if (size < PacketSize) {
visitor.init(mat.coeff(0), 0);
k = 1;
} else {
for(Index j = 0; j < mat.cols(); ++j) {
Index i = j == 0 ? 1 : 0;
for(; i+PacketSize-1 < mat.rows(); i += PacketSize) {
Packet p = mat.packet(i, j);
visitor.packet(p, i, j);
}
for(; i < mat.rows(); ++i)
visitor(mat.coeff(i, j), i, j);
}
Packet p = mat.template packet<Packet>(k);
visitor.initpacket(p, k);
k = PacketSize;
}
if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return;
for (; k + PacketSize - 1 < size; k += PacketSize) {
Packet p = mat.template packet<Packet>(k);
visitor.packet(p, k);
if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return;
}
for (; k < size; k++) {
visitor(mat.coeff(k), k);
if EIGEN_PREDICT_FALSE(short_circuit::run(visitor)) return;
}
}
};
@ -124,38 +314,77 @@ template<typename XprType>
class visitor_evaluator
{
public:
typedef internal::evaluator<XprType> Evaluator;
enum {
PacketAccess = Evaluator::Flags & PacketAccessBit,
IsRowMajor = XprType::IsRowMajor,
RowsAtCompileTime = XprType::RowsAtCompileTime,
ColsAtCompileTime = XprType::ColsAtCompileTime,
CoeffReadCost = Evaluator::CoeffReadCost
};
typedef evaluator<XprType> Evaluator;
typedef typename XprType::Scalar Scalar;
using Packet = typename packet_traits<Scalar>::type;
typedef std::remove_const_t<typename XprType::CoeffReturnType> CoeffReturnType;
static constexpr bool PacketAccess = static_cast<bool>(Evaluator::Flags & PacketAccessBit);
static constexpr bool LinearAccess = static_cast<bool>(Evaluator::Flags & LinearAccessBit);
static constexpr bool IsRowMajor = static_cast<bool>(XprType::IsRowMajor);
static constexpr int RowsAtCompileTime = XprType::RowsAtCompileTime;
static constexpr int ColsAtCompileTime = XprType::ColsAtCompileTime;
static constexpr int XprAlignment = Evaluator::Alignment;
static constexpr int CoeffReadCost = Evaluator::CoeffReadCost;
EIGEN_DEVICE_FUNC
explicit visitor_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) { }
typedef typename XprType::Scalar Scalar;
typedef std::remove_const_t<typename XprType::CoeffReturnType> CoeffReturnType;
typedef std::remove_const_t<typename XprType::PacketReturnType> PacketReturnType;
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_xpr.rows(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_xpr.cols(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size() const EIGEN_NOEXCEPT { return m_xpr.size(); }
EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{ return m_evaluator.coeff(row, col); }
EIGEN_DEVICE_FUNC PacketReturnType packet(Index row, Index col) const
{ return m_evaluator.template packet<Unaligned,PacketReturnType>(row, col); }
// outer-inner access
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const { return m_evaluator.coeff(row, col); }
template <typename Packet, int Alignment = Unaligned>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packet(Index row, Index col) const {
return m_evaluator.template packet<Alignment, Packet>(row, col);
}
// linear access
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_evaluator.coeff(index); }
template <typename Packet, int Alignment = XprAlignment>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet packet(Index index) const {
return m_evaluator.template packet<Alignment, Packet>(index);
}
protected:
Evaluator m_evaluator;
const XprType &m_xpr;
};
template <typename Derived, typename Visitor, bool ShortCircuitEvaulation>
struct visit_impl {
using Evaluator = visitor_evaluator<Derived>;
using Scalar = typename DenseBase<Derived>::Scalar;
static constexpr bool IsRowMajor = DenseBase<Derived>::IsRowMajor;
static constexpr int SizeAtCompileTime = DenseBase<Derived>::SizeAtCompileTime;
static constexpr int RowsAtCompileTime = DenseBase<Derived>::RowsAtCompileTime;
static constexpr int ColsAtCompileTime = DenseBase<Derived>::ColsAtCompileTime;
static constexpr int InnerSizeAtCompileTime = IsRowMajor ? ColsAtCompileTime : RowsAtCompileTime;
static constexpr int OuterSizeAtCompileTime = IsRowMajor ? RowsAtCompileTime : ColsAtCompileTime;
static constexpr bool LinearAccess = Evaluator::LinearAccess && static_cast<bool>(functor_traits<Visitor>::LinearAccess);
static constexpr bool Vectorize = Evaluator::PacketAccess && static_cast<bool>(functor_traits<Visitor>::PacketAccess);
static constexpr int PacketSize = packet_traits<Scalar>::size;
static constexpr int VectorOps = Vectorize ? (LinearAccess ? (SizeAtCompileTime / PacketSize) : (OuterSizeAtCompileTime * (InnerSizeAtCompileTime / PacketSize))) : 0;
static constexpr int ScalarOps = SizeAtCompileTime - (VectorOps * PacketSize);
// treat vector op and scalar op as same cost for unroll logic
static constexpr int TotalOps = VectorOps + ScalarOps;
static constexpr int UnrollCost = int(Evaluator::CoeffReadCost) + int(functor_traits<Visitor>::Cost);
static constexpr bool Unroll = (SizeAtCompileTime != Dynamic) && ((TotalOps * UnrollCost) <= EIGEN_UNROLLING_LIMIT);
static constexpr int UnrollCount = Unroll ? int(SizeAtCompileTime) : Dynamic;
using impl = visitor_impl<Visitor, Evaluator, UnrollCount, Vectorize, LinearAccess, ShortCircuitEvaulation>;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void run(const DenseBase<Derived>& mat, Visitor& visitor) {
Evaluator evaluator(mat.derived());
impl::run(evaluator, visitor);
}
};
} // end namespace internal
/** Applies the visitor \a visitor to the whole coefficients of the matrix or vector.
@ -182,17 +411,8 @@ template<typename Visitor>
EIGEN_DEVICE_FUNC
void DenseBase<Derived>::visit(Visitor& visitor) const
{
if(size()==0)
return;
typedef typename internal::visitor_evaluator<Derived> ThisEvaluator;
ThisEvaluator thisEval(derived());
enum {
unroll = SizeAtCompileTime != Dynamic
&& SizeAtCompileTime * int(ThisEvaluator::CoeffReadCost) + (SizeAtCompileTime-1) * int(internal::functor_traits<Visitor>::Cost) <= EIGEN_UNROLLING_LIMIT
};
return internal::visitor_impl<Visitor, ThisEvaluator, unroll ? int(SizeAtCompileTime) : Dynamic>::run(thisEval, visitor);
using impl = internal::visit_impl<Derived, Visitor, /*ShortCircuitEvaulation*/false>;
impl::run(derived(), visitor);
}
namespace internal {
@ -219,73 +439,72 @@ struct coeff_visitor
};
template<typename Scalar, int NaNPropagation, bool is_min=true>
template <typename Scalar, int NaNPropagation, bool is_min = true>
struct minmax_compare {
typedef typename packet_traits<Scalar>::type Packet;
static EIGEN_DEVICE_FUNC inline bool compare(Scalar a, Scalar b) { return a < b; }
static EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& p) { return predux_min<NaNPropagation>(p);}
static EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& p) { return predux_min<NaNPropagation>(p); }
};
template<typename Scalar, int NaNPropagation>
template <typename Scalar, int NaNPropagation>
struct minmax_compare<Scalar, NaNPropagation, false> {
typedef typename packet_traits<Scalar>::type Packet;
static EIGEN_DEVICE_FUNC inline bool compare(Scalar a, Scalar b) { return a > b; }
static EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& p) { return predux_max<NaNPropagation>(p);}
static EIGEN_DEVICE_FUNC inline Scalar predux(const Packet& p) { return predux_max<NaNPropagation>(p); }
};
template <typename Derived, bool is_min, int NaNPropagation>
struct minmax_coeff_visitor : coeff_visitor<Derived>
{
struct minmax_coeff_visitor : coeff_visitor<Derived> {
using Scalar = typename Derived::Scalar;
using Packet = typename packet_traits<Scalar>::type;
using Comparator = minmax_compare<Scalar, NaNPropagation, is_min>;
static constexpr Index PacketSize = packet_traits<Scalar>::size;
EIGEN_DEVICE_FUNC inline
void operator() (const Scalar& value, Index i, Index j)
{
if(Comparator::compare(value, this->res)) {
EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index i, Index j) {
if (Comparator::compare(value, this->res)) {
this->res = value;
this->row = i;
this->col = j;
}
}
EIGEN_DEVICE_FUNC inline
void packet(const Packet& p, Index i, Index j) {
const Index PacketSize = packet_traits<Scalar>::size;
EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index i, Index j) {
Scalar value = Comparator::predux(p);
if (Comparator::compare(value, this->res)) {
const Packet range = preverse(plset<Packet>(Scalar(1)));
Packet mask = pcmp_eq(pset1<Packet>(value), p);
Index max_idx = PacketSize - static_cast<Index>(predux_max(pand(range, mask)));
this->res = value;
this->row = Derived::IsRowMajor ? i : i + max_idx;;
this->row = Derived::IsRowMajor ? i : i + max_idx;
this->col = Derived::IsRowMajor ? j + max_idx : j;
}
}
EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index i, Index j) {
Scalar value = Comparator::predux(p);
const Packet range = preverse(plset<Packet>(Scalar(1)));
Packet mask = pcmp_eq(pset1<Packet>(value), p);
Index max_idx = PacketSize - static_cast<Index>(predux_max(pand(range, mask)));
this->res = value;
this->row = Derived::IsRowMajor ? i : i + max_idx;
this->col = Derived::IsRowMajor ? j + max_idx : j;
}
};
// Suppress NaN. The only case in which we return NaN is if the matrix is all NaN, in which case,
// the row=0, col=0 is returned for the location.
template <typename Derived, bool is_min>
struct minmax_coeff_visitor<Derived, is_min, PropagateNumbers> : coeff_visitor<Derived>
{
struct minmax_coeff_visitor<Derived, is_min, PropagateNumbers> : coeff_visitor<Derived> {
typedef typename Derived::Scalar Scalar;
using Packet = typename packet_traits<Scalar>::type;
using Comparator = minmax_compare<Scalar, PropagateNumbers, is_min>;
EIGEN_DEVICE_FUNC inline
void operator() (const Scalar& value, Index i, Index j)
{
EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index i, Index j) {
if ((!(numext::isnan)(value) && (numext::isnan)(this->res)) || Comparator::compare(value, this->res)) {
this->res = value;
this->row = i;
this->col = j;
}
}
EIGEN_DEVICE_FUNC inline
void packet(const Packet& p, Index i, Index j) {
EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index i, Index j) {
const Index PacketSize = packet_traits<Scalar>::size;
Scalar value = Comparator::predux(p);
if ((!(numext::isnan)(value) && (numext::isnan)(this->res)) || Comparator::compare(value, this->res)) {
@ -298,21 +517,28 @@ struct minmax_coeff_visitor<Derived, is_min, PropagateNumbers> : coeff_visitor<D
this->col = Derived::IsRowMajor ? j + max_idx : j;
}
}
EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index i, Index j) {
const Index PacketSize = packet_traits<Scalar>::size;
Scalar value = Comparator::predux(p);
const Packet range = preverse(plset<Packet>(Scalar(1)));
/* mask will be zero for NaNs, so they will be ignored. */
Packet mask = pcmp_eq(pset1<Packet>(value), p);
Index max_idx = PacketSize - static_cast<Index>(predux_max(pand(range, mask)));
this->res = value;
this->row = Derived::IsRowMajor ? i : i + max_idx;
this->col = Derived::IsRowMajor ? j + max_idx : j;
}
};
// Propagate NaN. If the matrix contains NaN, the location of the first NaN will be returned in
// row and col.
template <typename Derived, bool is_min>
struct minmax_coeff_visitor<Derived, is_min, PropagateNaN> : coeff_visitor<Derived>
{
struct minmax_coeff_visitor<Derived, is_min, PropagateNaN> : coeff_visitor<Derived> {
typedef typename Derived::Scalar Scalar;
using Packet = typename packet_traits<Scalar>::type;
using Comparator = minmax_compare<Scalar, PropagateNaN, is_min>;
EIGEN_DEVICE_FUNC inline
void operator() (const Scalar& value, Index i, Index j)
{
EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index i, Index j) {
const bool value_is_nan = (numext::isnan)(value);
if ((value_is_nan && !(numext::isnan)(this->res)) || Comparator::compare(value, this->res)) {
this->res = value;
@ -320,9 +546,7 @@ struct minmax_coeff_visitor<Derived, is_min, PropagateNaN> : coeff_visitor<Deriv
this->col = j;
}
}
EIGEN_DEVICE_FUNC inline
void packet(const Packet& p, Index i, Index j) {
EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index i, Index j) {
const Index PacketSize = packet_traits<Scalar>::size;
Scalar value = Comparator::predux(p);
const bool value_is_nan = (numext::isnan)(value);
@ -332,10 +556,22 @@ struct minmax_coeff_visitor<Derived, is_min, PropagateNaN> : coeff_visitor<Deriv
Packet mask = value_is_nan ? pnot(pcmp_eq(p, p)) : pcmp_eq(pset1<Packet>(value), p);
Index max_idx = PacketSize - static_cast<Index>(predux_max(pand(range, mask)));
this->res = value;
this->row = Derived::IsRowMajor ? i : i + max_idx;;
this->row = Derived::IsRowMajor ? i : i + max_idx;
this->col = Derived::IsRowMajor ? j + max_idx : j;
}
}
EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index i, Index j) {
const Index PacketSize = packet_traits<Scalar>::size;
Scalar value = Comparator::predux(p);
const bool value_is_nan = (numext::isnan)(value);
const Packet range = preverse(plset<Packet>(Scalar(1)));
// If the value is NaN, pick the first position of a NaN, otherwise pick the first extremal value.
Packet mask = value_is_nan ? pnot(pcmp_eq(p, p)) : pcmp_eq(pset1<Packet>(value), p);
Index max_idx = PacketSize - static_cast<Index>(predux_max(pand(range, mask)));
this->res = value;
this->row = Derived::IsRowMajor ? i : i + max_idx;
this->col = Derived::IsRowMajor ? j + max_idx : j;
}
};
template<typename Derived, bool is_min, int NaNPropagation>
@ -343,10 +579,90 @@ struct functor_traits<minmax_coeff_visitor<Derived, is_min, NaNPropagation> > {
using Scalar = typename Derived::Scalar;
enum {
Cost = NumTraits<Scalar>::AddCost,
LinearAccess = false,
PacketAccess = packet_traits<Scalar>::HasCmp
};
};
template <typename Scalar>
struct all_visitor {
using result_type = bool;
using Packet = typename packet_traits<Scalar>::type;
EIGEN_DEVICE_FUNC inline void init(const Scalar& value, Index, Index) { res = (value != Scalar(0)); }
EIGEN_DEVICE_FUNC inline void init(const Scalar& value, Index) { res = (value != Scalar(0)); }
EIGEN_DEVICE_FUNC inline bool all_predux(const Packet& p) const { return !predux_any(pcmp_eq(p, pzero(p))); }
EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index, Index) { res = all_predux(p); }
EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index) { res = all_predux(p); }
EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index, Index) { res = res && (value != Scalar(0)); }
EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index) { res = res && (value != Scalar(0)); }
EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index, Index) { res = res && all_predux(p); }
EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index) { res = res && all_predux(p); }
EIGEN_DEVICE_FUNC inline bool done() const { return !res; }
bool res = true;
};
template <typename Scalar>
struct functor_traits<all_visitor<Scalar>> {
enum { Cost = NumTraits<Scalar>::ReadCost, LinearAccess = true, PacketAccess = packet_traits<Scalar>::HasCmp };
};
template <typename Scalar>
struct any_visitor {
using result_type = bool;
using Packet = typename packet_traits<Scalar>::type;
EIGEN_DEVICE_FUNC inline void init(const Scalar& value, Index, Index) { res = (value != Scalar(0)); }
EIGEN_DEVICE_FUNC inline void init(const Scalar& value, Index) { res = (value != Scalar(0)); }
EIGEN_DEVICE_FUNC inline bool any_predux(const Packet& p) const {
return predux_any(pandnot(ptrue(p), pcmp_eq(p, pzero(p))));
}
EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index, Index) { res = any_predux(p); }
EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index) { res = any_predux(p); }
EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index, Index) { res = res || (value != Scalar(0)); }
EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index) { res = res || (value != Scalar(0)); }
EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index, Index) { res = res || any_predux(p); }
EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index) { res = res || any_predux(p); }
EIGEN_DEVICE_FUNC inline bool done() const { return res; }
bool res = false;
};
template <typename Scalar>
struct functor_traits<any_visitor<Scalar>> {
enum { Cost = NumTraits<Scalar>::ReadCost, LinearAccess = true, PacketAccess = packet_traits<Scalar>::HasCmp };
};
template <typename Scalar>
struct count_visitor {
using result_type = Index;
using Packet = typename packet_traits<Scalar>::type;
EIGEN_DEVICE_FUNC inline void init(const Scalar& value, Index, Index) { res = value != Scalar(0) ? 1 : 0; }
EIGEN_DEVICE_FUNC inline void init(const Scalar& value, Index) { res = value != Scalar(0) ? 1 : 0; }
EIGEN_DEVICE_FUNC inline Index count_redux(const Packet& p) const {
const Packet cst_one = pset1<Packet>(Scalar(1));
Packet true_vals = pandnot(cst_one, pcmp_eq(p, pzero(p)));
Scalar num_true = predux(true_vals);
return static_cast<Index>(num_true);
}
EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index, Index) { res = count_redux(p); }
EIGEN_DEVICE_FUNC inline void initpacket(const Packet& p, Index) { res = count_redux(p); }
EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index, Index) {
if (value != Scalar(0)) res++;
}
EIGEN_DEVICE_FUNC inline void operator()(const Scalar& value, Index) {
if (value != Scalar(0)) res++;
}
EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index, Index) { res += count_redux(p); }
EIGEN_DEVICE_FUNC inline void packet(const Packet& p, Index) { res += count_redux(p); }
Index res = 0;
};
template <typename Scalar>
struct functor_traits<count_visitor<Scalar>> {
enum {
Cost = NumTraits<Scalar>::AddCost,
LinearAccess = true,
// predux is problematic for bool
PacketAccess = packet_traits<Scalar>::HasCmp && packet_traits<Scalar>::HasAdd && !is_same<Scalar, bool>::value
};
};
} // end namespace internal
/** \fn DenseBase<Derived>::minCoeff(IndexType* rowId, IndexType* colId) const
@ -391,10 +707,10 @@ EIGEN_DEVICE_FUNC
typename internal::traits<Derived>::Scalar
DenseBase<Derived>::minCoeff(IndexType* index) const
{
eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
eigen_assert(this->rows() > 0 && this->cols() > 0 && "you are using an empty matrix");
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
internal::minmax_coeff_visitor<Derived, true, NaNPropagation> minVisitor;
internal::minmax_coeff_visitor<Derived, true, NaNPropagation> minVisitor;
this->visit(minVisitor);
*index = IndexType((RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row);
return minVisitor.res;
@ -445,12 +761,71 @@ DenseBase<Derived>::maxCoeff(IndexType* index) const
eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
internal::minmax_coeff_visitor<Derived, false, NaNPropagation> maxVisitor;
internal::minmax_coeff_visitor<Derived, false, NaNPropagation> maxVisitor;
this->visit(maxVisitor);
*index = (RowsAtCompileTime==1) ? maxVisitor.col : maxVisitor.row;
return maxVisitor.res;
}
/** \returns true if all coefficients are true
*
* Example: \include MatrixBase_all.cpp
* Output: \verbinclude MatrixBase_all.out
*
* \sa any(), Cwise::operator<()
*/
template <typename Derived>
EIGEN_DEVICE_FUNC inline bool DenseBase<Derived>::all() const {
using Visitor = internal::all_visitor<Scalar>;
using impl = internal::visit_impl<Derived, Visitor, /*ShortCircuitEvaulation*/true>;
Visitor visitor;
impl::run(derived(), visitor);
return visitor.res;
}
/** \returns true if at least one coefficient is true
*
* \sa all()
*/
template <typename Derived>
EIGEN_DEVICE_FUNC inline bool DenseBase<Derived>::any() const {
using Visitor = internal::any_visitor<Scalar>;
using impl = internal::visit_impl<Derived, Visitor, /*ShortCircuitEvaulation*/true>;
Visitor visitor;
impl::run(derived(), visitor);
return visitor.res;
}
/** \returns the number of coefficients which evaluate to true
*
* \sa all(), any()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC
Index DenseBase<Derived>::count() const
{
using Visitor = internal::count_visitor<Scalar>;
using impl = internal::visit_impl<Derived, Visitor, /*ShortCircuitEvaulation*/false>;
Visitor visitor;
impl::run(derived(), visitor);
return visitor.res;
}
template <typename Derived>
EIGEN_DEVICE_FUNC inline bool DenseBase<Derived>::hasNaN() const {
return derived().cwiseTypedNotEqual(derived()).any();
}
/** \returns true if \c *this contains only finite numbers, i.e., no NaN and no +/-INF values.
*
* \sa hasNaN()
*/
template <typename Derived>
EIGEN_DEVICE_FUNC inline bool DenseBase<Derived>::allFinite() const {
return derived().cwiseAbs().cwiseTypedLesser(NumTraits<Scalar>::infinity()).all();
}
} // end namespace Eigen
#endif // EIGEN_VISITOR_H

View File

@ -94,8 +94,8 @@ void binary_op_test(std::string name, Fn fun, RefFn ref) {
}
#define BINARY_FUNCTOR_TEST_ARGS(fun) #fun, \
[](const auto& x, const auto& y) { return (Eigen::fun)(x, y); }, \
[](const auto& x, const auto& y) { return (std::fun)(x, y); }
[](const auto& x_, const auto& y_) { return (Eigen::fun)(x_, y_); }, \
[](const auto& x_, const auto& y_) { return (std::fun)(x_, y_); }
template <typename Scalar>

View File

@ -173,23 +173,36 @@ template<typename VectorType> void vectorVisitor(const VectorType& w)
}
}
template<typename T, bool Vectorizable>
template <typename Derived, bool Vectorizable>
struct TrackedVisitor {
void init(T v, Index i, Index j) { return this->operator()(v,i,j); }
void operator()(T v, Index i, Index j) {
using Scalar = typename DenseBase<Derived>::Scalar;
static constexpr int PacketSize = Eigen::internal::packet_traits<Scalar>::size;
static constexpr bool RowMajor = Derived::IsRowMajor;
void init(Scalar v, Index i, Index j) { return this->operator()(v, i, j); }
template <typename Packet>
void initpacket(Packet p, Index i, Index j) {
return this->packet(p, i, j);
}
void operator()(Scalar v, Index i, Index j) {
EIGEN_UNUSED_VARIABLE(v)
visited.push_back({i, j});
vectorized = false;
visited.emplace_back(i, j);
scalarOps++;
}
template<typename Packet>
template <typename Packet>
void packet(Packet p, Index i, Index j) {
EIGEN_UNUSED_VARIABLE(p)
visited.push_back({i, j});
vectorized = true;
EIGEN_UNUSED_VARIABLE(p)
for (int k = 0; k < PacketSize; k++)
if (RowMajor)
visited.emplace_back(i, j + k);
else
visited.emplace_back(i + k, j);
vectorOps++;
}
std::vector<std::pair<int,int>> visited;
bool vectorized;
std::vector<std::pair<Index, Index>> visited;
Index scalarOps = 0;
Index vectorOps = 0;
};
namespace Eigen {
@ -197,129 +210,64 @@ namespace internal {
template<typename T, bool Vectorizable>
struct functor_traits<TrackedVisitor<T, Vectorizable> > {
enum { PacketAccess = Vectorizable, Cost = 1 };
enum { PacketAccess = Vectorizable, LinearAccess = false, Cost = 1 };
};
} // namespace internal
} // namespace Eigen
template <typename Derived, bool Vectorized>
void checkOptimalTraversal_impl(const DenseBase<Derived>& mat) {
using Scalar = typename DenseBase<Derived>::Scalar;
static constexpr int PacketSize = Eigen::internal::packet_traits<Scalar>::size;
static constexpr bool RowMajor = Derived::IsRowMajor;
Derived X(mat.rows(), mat.cols());
X.setRandom();
TrackedVisitor<Derived, Vectorized> visitor;
visitor.visited.reserve(X.size());
X.visit(visitor);
Index count = 0;
for (Index j = 0; j < X.outerSize(); ++j) {
for (Index i = 0; i < X.innerSize(); ++i) {
Index r = RowMajor ? j : i;
Index c = RowMajor ? i : j;
VERIFY_IS_EQUAL(visitor.visited[count].first, r);
VERIFY_IS_EQUAL(visitor.visited[count].second, c);
++count;
}
}
Index vectorOps = Vectorized ? ((X.innerSize() / PacketSize) * X.outerSize()) : 0;
Index scalarOps = X.size() - (vectorOps * PacketSize);
VERIFY_IS_EQUAL(vectorOps, visitor.vectorOps);
VERIFY_IS_EQUAL(scalarOps, visitor.scalarOps);
}
void checkOptimalTraversal() {
// Unrolled - ColMajor.
{
using MatrixType = Matrix<float, 4, 4, ColMajor>;
MatrixType X = MatrixType::Random(4, 4);
TrackedVisitor<MatrixType::Scalar, false> visitor;
X.visit(visitor);
Index count = 0;
for (Index j=0; j<X.cols(); ++j) {
for (Index i=0; i<X.rows(); ++i) {
VERIFY_IS_EQUAL(visitor.visited[count].first, i);
VERIFY_IS_EQUAL(visitor.visited[count].second, j);
++count;
}
}
}
// Unrolled - RowMajor.
{
using MatrixType = Matrix<float, 4, 4, RowMajor>;
MatrixType X = MatrixType::Random(4, 4);
TrackedVisitor<MatrixType::Scalar, false> visitor;
X.visit(visitor);
Index count = 0;
for (Index i=0; i<X.rows(); ++i) {
for (Index j=0; j<X.cols(); ++j) {
VERIFY_IS_EQUAL(visitor.visited[count].first, i);
VERIFY_IS_EQUAL(visitor.visited[count].second, j);
++count;
}
}
}
// Not unrolled - ColMajor
{
using MatrixType = Matrix<float, Dynamic, Dynamic, ColMajor>;
MatrixType X = MatrixType::Random(4, 4);
TrackedVisitor<MatrixType::Scalar, false> visitor;
X.visit(visitor);
Index count = 0;
for (Index j=0; j<X.cols(); ++j) {
for (Index i=0; i<X.rows(); ++i) {
VERIFY_IS_EQUAL(visitor.visited[count].first, i);
VERIFY_IS_EQUAL(visitor.visited[count].second, j);
++count;
}
}
}
// Not unrolled - RowMajor.
{
using MatrixType = Matrix<float, Dynamic, Dynamic, RowMajor>;
MatrixType X = MatrixType::Random(4, 4);
TrackedVisitor<MatrixType::Scalar, false> visitor;
X.visit(visitor);
Index count = 0;
for (Index i=0; i<X.rows(); ++i) {
for (Index j=0; j<X.cols(); ++j) {
VERIFY_IS_EQUAL(visitor.visited[count].first, i);
VERIFY_IS_EQUAL(visitor.visited[count].second, j);
++count;
}
}
}
// Vectorized - ColMajor
{
using MatrixType = Matrix<float, Dynamic, Dynamic, ColMajor>;
// Ensure rows/cols is larger than packet size.
constexpr int PacketSize = Eigen::internal::packet_traits<MatrixType::Scalar>::size;
MatrixType X = MatrixType::Random(4 * PacketSize, 4 * PacketSize);
TrackedVisitor<MatrixType::Scalar, true> visitor;
X.visit(visitor);
Index previ = -1;
Index prevj = 0;
for (const auto& p : visitor.visited) {
Index i = p.first;
Index j = p.second;
VERIFY(
(j == prevj && i == previ + 1) // Advance single element
|| (j == prevj && i == previ + PacketSize) // Advance packet
|| (j == prevj + 1 && i == 0) // Advance column
);
previ = i;
prevj = j;
}
if (Eigen::internal::packet_traits<MatrixType::Scalar>::Vectorizable) {
VERIFY(visitor.vectorized);
}
}
// Vectorized - RowMajor.
{
using MatrixType = Matrix<float, Dynamic, Dynamic, RowMajor>;
// Ensure rows/cols is larger than packet size.
constexpr int PacketSize = Eigen::internal::packet_traits<MatrixType::Scalar>::size;
MatrixType X = MatrixType::Random(4 * PacketSize, 4 * PacketSize);
TrackedVisitor<MatrixType::Scalar, true> visitor;
X.visit(visitor);
Index previ = 0;
Index prevj = -1;
for (const auto& p : visitor.visited) {
Index i = p.first;
Index j = p.second;
VERIFY(
(i == previ && j == prevj + 1) // Advance single element
|| (i == previ && j == prevj + PacketSize) // Advance packet
|| (i == previ + 1 && j == 0) // Advance row
);
previ = i;
prevj = j;
}
if (Eigen::internal::packet_traits<MatrixType::Scalar>::Vectorizable) {
VERIFY(visitor.vectorized);
}
}
using Scalar = float;
constexpr int PacketSize = Eigen::internal::packet_traits<Scalar>::size;
// use sizes that mix vector and scalar ops
constexpr int Rows = 3 * PacketSize + 1;
constexpr int Cols = 4 * PacketSize + 1;
int rows = internal::random(PacketSize + 1, EIGEN_TEST_MAX_SIZE);
int cols = internal::random(PacketSize + 1, EIGEN_TEST_MAX_SIZE);
using UnrollColMajor = Matrix<Scalar, Rows, Cols, ColMajor>;
using UnrollRowMajor = Matrix<Scalar, Rows, Cols, RowMajor>;
using DynamicColMajor = Matrix<Scalar, Dynamic, Dynamic, ColMajor>;
using DynamicRowMajor = Matrix<Scalar, Dynamic, Dynamic, RowMajor>;
// Scalar-only visitors
checkOptimalTraversal_impl<UnrollColMajor, false>(UnrollColMajor(Rows,Cols));
checkOptimalTraversal_impl<UnrollRowMajor, false>(UnrollRowMajor(Rows, Cols));
checkOptimalTraversal_impl<DynamicColMajor, false>(DynamicColMajor(rows, cols));
checkOptimalTraversal_impl<DynamicRowMajor, false>(DynamicRowMajor(rows, cols));
// Vectorized visitors
checkOptimalTraversal_impl<UnrollColMajor, true>(UnrollColMajor(Rows, Cols));
checkOptimalTraversal_impl<UnrollRowMajor, true>(UnrollRowMajor(Rows, Cols));
checkOptimalTraversal_impl<DynamicColMajor, true>(DynamicColMajor(rows, cols));
checkOptimalTraversal_impl<DynamicRowMajor, true>(DynamicRowMajor(rows, cols));
}
EIGEN_DECLARE_TEST(visitor)