mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-19 08:09:36 +08:00
bug #65: add vectorization of partial reductions along the outer-dimension, for instance: colmajor_mat.rowwise().mean()
This commit is contained in:
parent
bfa2a81a50
commit
1dd1f8e454
@ -306,6 +306,7 @@ using std::ptrdiff_t;
|
||||
#include "src/Core/BooleanRedux.h"
|
||||
#include "src/Core/Select.h"
|
||||
#include "src/Core/VectorwiseOp.h"
|
||||
#include "src/Core/PartialReduxEvaluator.h"
|
||||
#include "src/Core/Random.h"
|
||||
#include "src/Core/Replicate.h"
|
||||
#include "src/Core/Reverse.h"
|
||||
|
@ -1325,64 +1325,6 @@ protected:
|
||||
const variable_if_dynamic<Index, ArgType::ColsAtCompileTime> m_cols;
|
||||
};
|
||||
|
||||
|
||||
// -------------------- PartialReduxExpr --------------------
|
||||
|
||||
template< typename ArgType, typename MemberOp, int Direction>
|
||||
struct evaluator<PartialReduxExpr<ArgType, MemberOp, Direction> >
|
||||
: evaluator_base<PartialReduxExpr<ArgType, MemberOp, Direction> >
|
||||
{
|
||||
typedef PartialReduxExpr<ArgType, MemberOp, Direction> XprType;
|
||||
typedef typename internal::nested_eval<ArgType,1>::type ArgTypeNested;
|
||||
typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned;
|
||||
typedef typename ArgType::Scalar InputScalar;
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
enum {
|
||||
TraversalSize = Direction==int(Vertical) ? int(ArgType::RowsAtCompileTime) : int(ArgType::ColsAtCompileTime)
|
||||
};
|
||||
typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType;
|
||||
enum {
|
||||
CoeffReadCost = TraversalSize==Dynamic ? HugeCost
|
||||
: TraversalSize * evaluator<ArgType>::CoeffReadCost + int(CostOpType::value),
|
||||
|
||||
Flags = (traits<XprType>::Flags&RowMajorBit) | (evaluator<ArgType>::Flags&(HereditaryBits&(~RowMajorBit))) | LinearAccessBit,
|
||||
|
||||
Alignment = 0 // FIXME this will need to be improved once PartialReduxExpr is vectorized
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit evaluator(const XprType xpr)
|
||||
: m_arg(xpr.nestedExpression()), m_functor(xpr.functor())
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(TraversalSize==Dynamic ? HugeCost : int(CostOpType::value));
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const Scalar coeff(Index i, Index j) const
|
||||
{
|
||||
if (Direction==Vertical)
|
||||
return m_functor(m_arg.col(j));
|
||||
else
|
||||
return m_functor(m_arg.row(i));
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const Scalar coeff(Index index) const
|
||||
{
|
||||
if (Direction==Vertical)
|
||||
return m_functor(m_arg.col(index));
|
||||
else
|
||||
return m_functor(m_arg.row(index));
|
||||
}
|
||||
|
||||
protected:
|
||||
typename internal::add_const_on_value_type<ArgTypeNested>::type m_arg;
|
||||
const MemberOp m_functor;
|
||||
};
|
||||
|
||||
|
||||
// -------------------- MatrixWrapper and ArrayWrapper --------------------
|
||||
//
|
||||
// evaluator_wrapper_base<T> is a common base class for the
|
||||
|
224
Eigen/src/Core/PartialReduxEvaluator.h
Normal file
224
Eigen/src/Core/PartialReduxEvaluator.h
Normal file
@ -0,0 +1,224 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011-2018 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_PARTIALREDUX_H
|
||||
#define EIGEN_PARTIALREDUX_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
*
|
||||
* This file provides evaluators for partial reductions.
|
||||
* There are two modes:
|
||||
*
|
||||
* - scalar path: simply calls the respective function on the column or row.
|
||||
* -> nothing special here, all the tricky part is handled by the return
|
||||
* types of VectorwiseOp's members. They embed the functor calling the
|
||||
* respective DenseBase's member function.
|
||||
*
|
||||
* - vectorized path: implements a packet-wise reductions followed by
|
||||
* some (optional) processing of the outcome, e.g., division by n for mean.
|
||||
*
|
||||
* For the vectorized path let's observe that the packet-size and outer-unrolling
|
||||
* are both decided by the assignement logic. So all we have to do is to decide
|
||||
* on the inner unrolling.
|
||||
*
|
||||
* For the unrolling, we can reuse "internal::redux_vec_unroller" from Redux.h,
|
||||
* but be need to be careful to specify correct increment.
|
||||
*
|
||||
***************************************************************************/
|
||||
|
||||
|
||||
/* logic deciding a strategy for unrolling of vectorized paths */
|
||||
template<typename Func, typename Evaluator>
|
||||
struct packetwise_redux_traits
|
||||
{
|
||||
enum {
|
||||
OuterSize = int(Evaluator::IsRowMajor) ? Evaluator::RowsAtCompileTime : Evaluator::ColsAtCompileTime,
|
||||
Cost = OuterSize == Dynamic ? HugeCost
|
||||
: OuterSize * Evaluator::CoeffReadCost + (OuterSize-1) * functor_traits<Func>::Cost,
|
||||
Unrolling = Cost <= EIGEN_UNROLLING_LIMIT ? CompleteUnrolling : NoUnrolling
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
/* Value to be returned when size==0 , by default let's return 0 */
|
||||
template<typename PacketType,typename Func>
|
||||
EIGEN_DEVICE_FUNC
|
||||
PacketType packetwise_redux_empty_value(const Func& ) { return pset1<PacketType>(0); }
|
||||
|
||||
/* For products the default is 1 */
|
||||
template<typename PacketType,typename Scalar>
|
||||
EIGEN_DEVICE_FUNC
|
||||
PacketType packetwise_redux_empty_value(const scalar_product_op<Scalar,Scalar>& ) { return pset1<PacketType>(1); }
|
||||
|
||||
/* Perform the actual reduction */
|
||||
template<typename Func, typename Evaluator,
|
||||
int Unrolling = packetwise_redux_traits<Func, Evaluator>::Unrolling
|
||||
>
|
||||
struct packetwise_redux_impl;
|
||||
|
||||
/* Perform the actual reduction with unrolling */
|
||||
template<typename Func, typename Evaluator>
|
||||
struct packetwise_redux_impl<Func, Evaluator, CompleteUnrolling>
|
||||
{
|
||||
typedef redux_novec_unroller<Func,Evaluator, 0, Evaluator::SizeAtCompileTime> Base;
|
||||
typedef typename Evaluator::Scalar Scalar;
|
||||
|
||||
template<typename PacketType>
|
||||
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE
|
||||
PacketType run(const Evaluator &eval, const Func& func, Index /*size*/)
|
||||
{
|
||||
return redux_vec_unroller<Func, Evaluator, 0, packetwise_redux_traits<Func, Evaluator>::OuterSize>::template run<PacketType>(eval,func);
|
||||
}
|
||||
};
|
||||
|
||||
/* Add a specialization of redux_vec_unroller for size==0 at compiletime.
|
||||
* This specialization is not required for general reductions, which is
|
||||
* why it is defined here.
|
||||
*/
|
||||
template<typename Func, typename Evaluator, int Start>
|
||||
struct redux_vec_unroller<Func, Evaluator, Start, 0>
|
||||
{
|
||||
template<typename PacketType>
|
||||
EIGEN_DEVICE_FUNC
|
||||
static EIGEN_STRONG_INLINE PacketType run(const Evaluator &, const Func& f)
|
||||
{
|
||||
return packetwise_redux_empty_value<PacketType>(f);
|
||||
}
|
||||
};
|
||||
|
||||
/* Perform the actual reduction for dynamic sizes */
|
||||
template<typename Func, typename Evaluator>
|
||||
struct packetwise_redux_impl<Func, Evaluator, NoUnrolling>
|
||||
{
|
||||
typedef typename Evaluator::Scalar Scalar;
|
||||
typedef typename redux_traits<Func, Evaluator>::PacketType PacketScalar;
|
||||
|
||||
template<typename PacketType>
|
||||
EIGEN_DEVICE_FUNC
|
||||
static PacketType run(const Evaluator &eval, const Func& func, Index size)
|
||||
{
|
||||
if(size==0)
|
||||
return packetwise_redux_empty_value<PacketType>(func);
|
||||
|
||||
const Index size4 = (size-1)&(~3);
|
||||
PacketType p = eval.template packetByOuterInner<Unaligned,PacketType>(0,0);
|
||||
Index i = 1;
|
||||
// This loop is optimized for instruction pipelining:
|
||||
// - each iteration generates two independent instructions
|
||||
// - thanks to branch prediction and out-of-order execution we have independent instructions across loops
|
||||
for(; i<size4; i+=4)
|
||||
p = func.packetOp(p,
|
||||
func.packetOp(
|
||||
func.packetOp(eval.template packetByOuterInner<Unaligned,PacketType>(i+0,0),eval.template packetByOuterInner<Unaligned,PacketType>(i+1,0)),
|
||||
func.packetOp(eval.template packetByOuterInner<Unaligned,PacketType>(i+2,0),eval.template packetByOuterInner<Unaligned,PacketType>(i+3,0))));
|
||||
for(; i<size; ++i)
|
||||
p = func.packetOp(p, eval.template packetByOuterInner<Unaligned,PacketType>(i,0));
|
||||
return p;
|
||||
}
|
||||
};
|
||||
|
||||
template< typename ArgType, typename MemberOp, int Direction>
|
||||
struct evaluator<PartialReduxExpr<ArgType, MemberOp, Direction> >
|
||||
: evaluator_base<PartialReduxExpr<ArgType, MemberOp, Direction> >
|
||||
{
|
||||
typedef PartialReduxExpr<ArgType, MemberOp, Direction> XprType;
|
||||
typedef typename internal::nested_eval<ArgType,1>::type ArgTypeNested;
|
||||
typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned;
|
||||
typedef typename ArgType::Scalar InputScalar;
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
enum {
|
||||
TraversalSize = Direction==int(Vertical) ? int(ArgType::RowsAtCompileTime) : int(ArgType::ColsAtCompileTime)
|
||||
};
|
||||
typedef typename MemberOp::template Cost<int(TraversalSize)> CostOpType;
|
||||
enum {
|
||||
CoeffReadCost = TraversalSize==Dynamic ? HugeCost
|
||||
: TraversalSize==0 ? 1
|
||||
: TraversalSize * evaluator<ArgType>::CoeffReadCost + int(CostOpType::value),
|
||||
|
||||
_ArgFlags = evaluator<ArgType>::Flags,
|
||||
|
||||
_Vectorizable = bool(int(_ArgFlags)&PacketAccessBit)
|
||||
&& bool(MemberOp::Vectorizable)
|
||||
&& (Direction==int(Vertical) ? bool(_ArgFlags&RowMajorBit) : (_ArgFlags&RowMajorBit)==0)
|
||||
&& (TraversalSize!=0),
|
||||
|
||||
Flags = (traits<XprType>::Flags&RowMajorBit)
|
||||
| (evaluator<ArgType>::Flags&(HereditaryBits&(~RowMajorBit)))
|
||||
| (_Vectorizable ? PacketAccessBit : 0)
|
||||
| LinearAccessBit,
|
||||
|
||||
Alignment = 0 // FIXME this will need to be improved once PartialReduxExpr is vectorized
|
||||
};
|
||||
|
||||
EIGEN_DEVICE_FUNC explicit evaluator(const XprType xpr)
|
||||
: m_arg(xpr.nestedExpression()), m_functor(xpr.functor())
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(TraversalSize==Dynamic ? HugeCost : (TraversalSize==0 ? 1 : int(CostOpType::value)));
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const Scalar coeff(Index i, Index j) const
|
||||
{
|
||||
return coeff(Direction==Vertical ? j : i);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const Scalar coeff(Index index) const
|
||||
{
|
||||
return m_functor(m_arg.template subVector<DirectionType(Direction)>(index));
|
||||
}
|
||||
|
||||
template<int LoadMode,typename PacketType>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
PacketType packet(Index i, Index j) const
|
||||
{
|
||||
return packet<LoadMode,PacketType>(Direction==Vertical ? j : i);
|
||||
}
|
||||
|
||||
template<int LoadMode,typename PacketType>
|
||||
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
|
||||
PacketType packet(Index idx) const
|
||||
{
|
||||
enum { PacketSize = internal::unpacket_traits<PacketType>::size };
|
||||
typedef Block<const ArgType,
|
||||
Direction==Vertical ? int(ArgType::RowsAtCompileTime) : int(PacketSize),
|
||||
Direction==Vertical ? int(PacketSize) : int(ArgType::ColsAtCompileTime),
|
||||
true /* InnerPanel */> PanelType;
|
||||
|
||||
PanelType panel(m_arg,
|
||||
Direction==Vertical ? 0 : idx,
|
||||
Direction==Vertical ? idx : 0,
|
||||
Direction==Vertical ? m_arg.rows() : Index(PacketSize),
|
||||
Direction==Vertical ? Index(PacketSize) : m_arg.cols());
|
||||
|
||||
typedef typename internal::redux_evaluator<PanelType> PanelEvaluator;
|
||||
PanelEvaluator panel_eval(panel);
|
||||
typedef typename MemberOp::BinaryOp BinaryOp;
|
||||
PacketType p = internal::packetwise_redux_impl<BinaryOp,PanelEvaluator>::template run<PacketType>(panel_eval,m_functor.binaryFunc(),m_arg.outerSize());
|
||||
return p;
|
||||
}
|
||||
|
||||
protected:
|
||||
typename internal::add_const_on_value_type<ArgTypeNested>::type m_arg;
|
||||
const MemberOp m_functor;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_PARTIALREDUX_H
|
@ -81,39 +81,46 @@ class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr<Matri
|
||||
const MemberOp m_functor;
|
||||
};
|
||||
|
||||
#define EIGEN_MEMBER_FUNCTOR(MEMBER,COST) \
|
||||
template <typename ResultType> \
|
||||
struct member_##MEMBER { \
|
||||
EIGEN_EMPTY_STRUCT_CTOR(member_##MEMBER) \
|
||||
typedef ResultType result_type; \
|
||||
template<typename Scalar, int Size> struct Cost \
|
||||
{ enum { value = COST }; }; \
|
||||
template<typename XprType> \
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \
|
||||
ResultType operator()(const XprType& mat) const \
|
||||
{ return mat.MEMBER(); } \
|
||||
template<typename A,typename B> struct partial_redux_dummy_func;
|
||||
|
||||
#define EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(MEMBER,COST,VECTORIZABLE,BINARYOP) \
|
||||
template <typename ResultType,typename Scalar> \
|
||||
struct member_##MEMBER { \
|
||||
EIGEN_EMPTY_STRUCT_CTOR(member_##MEMBER) \
|
||||
typedef ResultType result_type; \
|
||||
typedef BINARYOP<Scalar,Scalar> BinaryOp; \
|
||||
template<int Size> struct Cost { enum { value = COST }; }; \
|
||||
enum { Vectorizable = VECTORIZABLE }; \
|
||||
template<typename XprType> \
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \
|
||||
ResultType operator()(const XprType& mat) const \
|
||||
{ return mat.MEMBER(); } \
|
||||
BinaryOp binaryFunc() const { return BinaryOp(); } \
|
||||
}
|
||||
|
||||
#define EIGEN_MEMBER_FUNCTOR(MEMBER,COST) \
|
||||
EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(MEMBER,COST,0,partial_redux_dummy_func)
|
||||
|
||||
namespace internal {
|
||||
|
||||
EIGEN_MEMBER_FUNCTOR(squaredNorm, Size * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(stableNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(blueNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(hypotNorm, (Size-1) * functor_traits<scalar_hypot_op<Scalar> >::Cost );
|
||||
EIGEN_MEMBER_FUNCTOR(sum, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(mean, (Size-1)*NumTraits<Scalar>::AddCost + NumTraits<Scalar>::MulCost);
|
||||
EIGEN_MEMBER_FUNCTOR(minCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||
EIGEN_MEMBER_FUNCTOR(prod, (Size-1)*NumTraits<Scalar>::MulCost);
|
||||
|
||||
template <int p, typename ResultType>
|
||||
EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(sum, (Size-1)*NumTraits<Scalar>::AddCost, 1, internal::scalar_sum_op);
|
||||
EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(minCoeff, (Size-1)*NumTraits<Scalar>::AddCost, 1, internal::scalar_min_op);
|
||||
EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost, 1, internal::scalar_max_op);
|
||||
EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(prod, (Size-1)*NumTraits<Scalar>::MulCost, 1, internal::scalar_product_op);
|
||||
|
||||
template <int p, typename ResultType,typename Scalar>
|
||||
struct member_lpnorm {
|
||||
typedef ResultType result_type;
|
||||
template<typename Scalar, int Size> struct Cost
|
||||
enum { Vectorizable = 0 };
|
||||
template<int Size> struct Cost
|
||||
{ enum { value = (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost }; };
|
||||
EIGEN_DEVICE_FUNC member_lpnorm() {}
|
||||
template<typename XprType>
|
||||
@ -121,17 +128,20 @@ struct member_lpnorm {
|
||||
{ return mat.template lpNorm<p>(); }
|
||||
};
|
||||
|
||||
template <typename BinaryOp, typename Scalar>
|
||||
template <typename BinaryOpT, typename Scalar>
|
||||
struct member_redux {
|
||||
typedef BinaryOpT BinaryOp;
|
||||
typedef typename result_of<
|
||||
BinaryOp(const Scalar&,const Scalar&)
|
||||
>::type result_type;
|
||||
template<typename _Scalar, int Size> struct Cost
|
||||
{ enum { value = (Size-1) * functor_traits<BinaryOp>::Cost }; };
|
||||
|
||||
enum { Vectorizable = functor_traits<BinaryOp>::PacketAccess };
|
||||
template<int Size> struct Cost { enum { value = (Size-1) * functor_traits<BinaryOp>::Cost }; };
|
||||
EIGEN_DEVICE_FUNC explicit member_redux(const BinaryOp func) : m_functor(func) {}
|
||||
template<typename Derived>
|
||||
EIGEN_DEVICE_FUNC inline result_type operator()(const DenseBase<Derived>& mat) const
|
||||
{ return mat.redux(m_functor); }
|
||||
const BinaryOp& binaryFunc() const { return m_functor; }
|
||||
const BinaryOp m_functor;
|
||||
};
|
||||
}
|
||||
@ -175,11 +185,11 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
typedef typename internal::ref_selector<ExpressionType>::non_const_type ExpressionTypeNested;
|
||||
typedef typename internal::remove_all<ExpressionTypeNested>::type ExpressionTypeNestedCleaned;
|
||||
|
||||
template<template<typename _Scalar> class Functor,
|
||||
typename Scalar_=Scalar> struct ReturnType
|
||||
template<template<typename OutScalar,typename InputScalar> class Functor,
|
||||
typename ReturnScalar=Scalar> struct ReturnType
|
||||
{
|
||||
typedef PartialReduxExpr<ExpressionType,
|
||||
Functor<Scalar_>,
|
||||
Functor<ReturnScalar,Scalar>,
|
||||
Direction
|
||||
> Type;
|
||||
};
|
||||
@ -294,22 +304,22 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
|
||||
typedef typename ReturnType<internal::member_minCoeff>::Type MinCoeffReturnType;
|
||||
typedef typename ReturnType<internal::member_maxCoeff>::Type MaxCoeffReturnType;
|
||||
typedef typename ReturnType<internal::member_squaredNorm,RealScalar>::Type SquaredNormReturnType;
|
||||
typedef typename ReturnType<internal::member_norm,RealScalar>::Type NormReturnType;
|
||||
typedef PartialReduxExpr<const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const ExpressionTypeNestedCleaned>,internal::member_sum<RealScalar,RealScalar>,Direction> SquaredNormReturnType;
|
||||
typedef CwiseUnaryOp<internal::scalar_sqrt_op<RealScalar>, const SquaredNormReturnType> NormReturnType;
|
||||
typedef typename ReturnType<internal::member_blueNorm,RealScalar>::Type BlueNormReturnType;
|
||||
typedef typename ReturnType<internal::member_stableNorm,RealScalar>::Type StableNormReturnType;
|
||||
typedef typename ReturnType<internal::member_hypotNorm,RealScalar>::Type HypotNormReturnType;
|
||||
typedef typename ReturnType<internal::member_sum>::Type SumReturnType;
|
||||
typedef typename ReturnType<internal::member_mean>::Type MeanReturnType;
|
||||
typedef EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(SumReturnType,Scalar,quotient) MeanReturnType;
|
||||
typedef typename ReturnType<internal::member_all>::Type AllReturnType;
|
||||
typedef typename ReturnType<internal::member_any>::Type AnyReturnType;
|
||||
typedef PartialReduxExpr<ExpressionType, internal::member_count<Index>, Direction> CountReturnType;
|
||||
typedef PartialReduxExpr<ExpressionType, internal::member_count<Index,Scalar>, Direction> CountReturnType;
|
||||
typedef typename ReturnType<internal::member_prod>::Type ProdReturnType;
|
||||
typedef Reverse<const ExpressionType, Direction> ConstReverseReturnType;
|
||||
typedef Reverse<ExpressionType, Direction> ReverseReturnType;
|
||||
|
||||
template<int p> struct LpNormReturnType {
|
||||
typedef PartialReduxExpr<ExpressionType, internal::member_lpnorm<p,RealScalar>,Direction> Type;
|
||||
typedef PartialReduxExpr<ExpressionType, internal::member_lpnorm<p,RealScalar,Scalar>,Direction> Type;
|
||||
};
|
||||
|
||||
/** \returns a row (or column) vector expression of the smallest coefficient
|
||||
@ -348,7 +358,7 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
* \sa DenseBase::squaredNorm() */
|
||||
EIGEN_DEVICE_FUNC
|
||||
const SquaredNormReturnType squaredNorm() const
|
||||
{ return SquaredNormReturnType(_expression()); }
|
||||
{ return SquaredNormReturnType(m_matrix.cwiseAbs2()); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the norm
|
||||
* of each column (or row) of the referenced expression.
|
||||
@ -360,7 +370,7 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
* \sa DenseBase::norm() */
|
||||
EIGEN_DEVICE_FUNC
|
||||
const NormReturnType norm() const
|
||||
{ return NormReturnType(_expression()); }
|
||||
{ return NormReturnType(squaredNorm()); }
|
||||
|
||||
/** \returns a row (or column) vector expression of the norm
|
||||
* of each column (or row) of the referenced expression.
|
||||
@ -425,7 +435,7 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
* \sa DenseBase::mean() */
|
||||
EIGEN_DEVICE_FUNC
|
||||
const MeanReturnType mean() const
|
||||
{ return MeanReturnType(_expression()); }
|
||||
{ return sum() / Scalar(Direction==Vertical?m_matrix.rows():m_matrix.cols()); }
|
||||
|
||||
/** \returns a row (or column) vector expression representing
|
||||
* whether \b all coefficients of each respective column (or row) are \c true.
|
||||
@ -630,7 +640,7 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
|
||||
EIGEN_DEVICE_FUNC
|
||||
CwiseBinaryOp<internal::scalar_quotient_op<Scalar>,
|
||||
const ExpressionTypeNestedCleaned,
|
||||
const typename OppositeExtendedType<typename ReturnType<internal::member_norm,RealScalar>::Type>::Type>
|
||||
const typename OppositeExtendedType<NormReturnType>::Type>
|
||||
normalized() const { return m_matrix.cwiseQuotient(extendedToOpposite(this->norm())); }
|
||||
|
||||
|
||||
|
@ -256,6 +256,7 @@ EIGEN_DECLARE_TEST(vectorwiseop)
|
||||
CALL_SUBTEST_2( vectorwiseop_array(Array<double, 3, 2>()) );
|
||||
CALL_SUBTEST_3( vectorwiseop_array(ArrayXXf(3, 4)) );
|
||||
CALL_SUBTEST_4( vectorwiseop_matrix(Matrix4cf()) );
|
||||
CALL_SUBTEST_5( vectorwiseop_matrix(Matrix4f()) );
|
||||
CALL_SUBTEST_5( vectorwiseop_matrix(Matrix<float,4,5>()) );
|
||||
CALL_SUBTEST_6( vectorwiseop_matrix(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
||||
CALL_SUBTEST_7( vectorwiseop_matrix(VectorXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
||||
|
Loading…
x
Reference in New Issue
Block a user