mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 11:49:02 +08:00
deleting hip specific files that are no longer required
This commit is contained in:
parent
dec47a6493
commit
1fe0b74904
@ -1,172 +0,0 @@
|
|||||||
// This file is part of Eigen, a lightweight C++ template library
|
|
||||||
// for linear algebra.
|
|
||||||
//
|
|
||||||
// Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
||||||
//
|
|
||||||
// This Source Code Form is subject to the terms of the Mozilla
|
|
||||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
||||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
||||||
|
|
||||||
// workaround issue between gcc >= 4.7 and cuda 5.5
|
|
||||||
#if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7)
|
|
||||||
#undef _GLIBCXX_ATOMIC_BUILTINS
|
|
||||||
#undef _GLIBCXX_USE_INT128
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
||||||
#define EIGEN_TEST_NO_COMPLEX
|
|
||||||
#define EIGEN_TEST_FUNC hip_basic
|
|
||||||
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
|
|
||||||
|
|
||||||
#include <hip/hip_runtime.h>
|
|
||||||
|
|
||||||
#include "main.h"
|
|
||||||
#include "hip_common.h"
|
|
||||||
|
|
||||||
// Check that dense modules can be properly parsed by hipcc
|
|
||||||
#include <Eigen/Dense>
|
|
||||||
|
|
||||||
// struct Foo{
|
|
||||||
// EIGEN_DEVICE_FUNC
|
|
||||||
// void operator()(int i, const float* mats, float* vecs) const {
|
|
||||||
// using namespace Eigen;
|
|
||||||
// // Matrix3f M(data);
|
|
||||||
// // Vector3f x(data+9);
|
|
||||||
// // Map<Vector3f>(data+9) = M.inverse() * x;
|
|
||||||
// Matrix3f M(mats+i/16);
|
|
||||||
// Vector3f x(vecs+i*3);
|
|
||||||
// // using std::min;
|
|
||||||
// // using std::sqrt;
|
|
||||||
// Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x();
|
|
||||||
// //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum();
|
|
||||||
// }
|
|
||||||
// };
|
|
||||||
|
|
||||||
template<typename T>
|
|
||||||
struct coeff_wise {
|
|
||||||
EIGEN_DEVICE_FUNC
|
|
||||||
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
|
|
||||||
{
|
|
||||||
using namespace Eigen;
|
|
||||||
T x1(in+i);
|
|
||||||
T x2(in+i+1);
|
|
||||||
T x3(in+i+2);
|
|
||||||
Map<T> res(out+i*T::MaxSizeAtCompileTime);
|
|
||||||
|
|
||||||
res.array() += (in[0] * x1 + x2).array() * x3.array();
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename T>
|
|
||||||
struct replicate {
|
|
||||||
EIGEN_DEVICE_FUNC
|
|
||||||
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
|
|
||||||
{
|
|
||||||
using namespace Eigen;
|
|
||||||
T x1(in+i);
|
|
||||||
int step = x1.size() * 4;
|
|
||||||
int stride = 3 * step;
|
|
||||||
|
|
||||||
typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType;
|
|
||||||
MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2);
|
|
||||||
MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3);
|
|
||||||
MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename T>
|
|
||||||
struct redux {
|
|
||||||
EIGEN_DEVICE_FUNC
|
|
||||||
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
|
|
||||||
{
|
|
||||||
using namespace Eigen;
|
|
||||||
int N = 10;
|
|
||||||
T x1(in+i);
|
|
||||||
out[i*N+0] = x1.minCoeff();
|
|
||||||
out[i*N+1] = x1.maxCoeff();
|
|
||||||
out[i*N+2] = x1.sum();
|
|
||||||
out[i*N+3] = x1.prod();
|
|
||||||
out[i*N+4] = x1.matrix().squaredNorm();
|
|
||||||
out[i*N+5] = x1.matrix().norm();
|
|
||||||
out[i*N+6] = x1.colwise().sum().maxCoeff();
|
|
||||||
out[i*N+7] = x1.rowwise().maxCoeff().sum();
|
|
||||||
out[i*N+8] = x1.matrix().colwise().squaredNorm().sum();
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename T1, typename T2>
|
|
||||||
struct prod_test {
|
|
||||||
EIGEN_DEVICE_FUNC
|
|
||||||
void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
|
|
||||||
{
|
|
||||||
using namespace Eigen;
|
|
||||||
typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3;
|
|
||||||
T1 x1(in+i);
|
|
||||||
T2 x2(in+i+1);
|
|
||||||
Map<T3> res(out+i*T3::MaxSizeAtCompileTime);
|
|
||||||
res += in[i] * x1 * x2;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename T1, typename T2>
|
|
||||||
struct diagonal {
|
|
||||||
EIGEN_DEVICE_FUNC
|
|
||||||
void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
|
|
||||||
{
|
|
||||||
using namespace Eigen;
|
|
||||||
T1 x1(in+i);
|
|
||||||
Map<T2> res(out+i*T2::MaxSizeAtCompileTime);
|
|
||||||
res += x1.diagonal();
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename T>
|
|
||||||
struct eigenvalues {
|
|
||||||
EIGEN_DEVICE_FUNC
|
|
||||||
void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
|
|
||||||
{
|
|
||||||
using namespace Eigen;
|
|
||||||
typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
|
|
||||||
T M(in+i);
|
|
||||||
Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
|
|
||||||
T A = M*M.adjoint();
|
|
||||||
SelfAdjointEigenSolver<T> eig;
|
|
||||||
eig.computeDirect(M);
|
|
||||||
res = eig.eigenvalues();
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
void test_hip_basic()
|
|
||||||
{
|
|
||||||
ei_test_init_hip();
|
|
||||||
|
|
||||||
int nthreads = 100;
|
|
||||||
Eigen::VectorXf in, out;
|
|
||||||
|
|
||||||
#ifndef __HIP_DEVICE_COMPILE__
|
|
||||||
int data_size = nthreads * 512;
|
|
||||||
in.setRandom(data_size);
|
|
||||||
out.setRandom(data_size);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
CALL_SUBTEST( run_and_compare_to_hip(coeff_wise<Vector3f>(), nthreads, in, out) );
|
|
||||||
CALL_SUBTEST( run_and_compare_to_hip(coeff_wise<Array44f>(), nthreads, in, out) );
|
|
||||||
|
|
||||||
// FIXME compile fails when we uncomment the followig two tests
|
|
||||||
// CALL_SUBTEST( run_and_compare_to_hip(replicate<Array4f>(), nthreads, in, out) );
|
|
||||||
// CALL_SUBTEST( run_and_compare_to_hip(replicate<Array33f>(), nthreads, in, out) );
|
|
||||||
|
|
||||||
CALL_SUBTEST( run_and_compare_to_hip(redux<Array4f>(), nthreads, in, out) );
|
|
||||||
CALL_SUBTEST( run_and_compare_to_hip(redux<Matrix3f>(), nthreads, in, out) );
|
|
||||||
|
|
||||||
CALL_SUBTEST( run_and_compare_to_hip(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) );
|
|
||||||
CALL_SUBTEST( run_and_compare_to_hip(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) );
|
|
||||||
|
|
||||||
CALL_SUBTEST( run_and_compare_to_hip(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) );
|
|
||||||
CALL_SUBTEST( run_and_compare_to_hip(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
|
|
||||||
|
|
||||||
// FIXME : Runtime failure occurs when we uncomment the following two tests
|
|
||||||
// CALL_SUBTEST( run_and_compare_to_hip(eigenvalues<Matrix3f>(), nthreads, in, out) );
|
|
||||||
// CALL_SUBTEST( run_and_compare_to_hip(eigenvalues<Matrix2f>(), nthreads, in, out) );
|
|
||||||
|
|
||||||
}
|
|
@ -1,103 +0,0 @@
|
|||||||
|
|
||||||
#ifndef EIGEN_TEST_HIP_COMMON_H
|
|
||||||
#define EIGEN_TEST_HIP_COMMON_H
|
|
||||||
|
|
||||||
#include "hip/hip_runtime.h"
|
|
||||||
#include "hip/hip_runtime_api.h"
|
|
||||||
#include <iostream>
|
|
||||||
|
|
||||||
#ifndef __HIPCC__
|
|
||||||
dim3 threadIdx, blockDim, blockIdx;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
template<typename Kernel, typename Input, typename Output>
|
|
||||||
void run_on_cpu(const Kernel& ker, int n, const Input& in, Output& out)
|
|
||||||
{
|
|
||||||
for(int i=0; i<n; i++)
|
|
||||||
ker(i, in.data(), out.data());
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
template<typename Kernel, typename Input, typename Output>
|
|
||||||
__global__ __attribute__((used))
|
|
||||||
void run_on_hip_meta_kernel(const Kernel ker, int n, const Input* in, Output* out)
|
|
||||||
{
|
|
||||||
int i = hipThreadIdx_x + hipBlockIdx_x*hipBlockDim_x;
|
|
||||||
if(i<n) {
|
|
||||||
ker(i, in, out);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
template<typename Kernel, typename Input, typename Output>
|
|
||||||
void run_on_hip(const Kernel& ker, int n, const Input& in, Output& out)
|
|
||||||
{
|
|
||||||
typename Input::Scalar* d_in;
|
|
||||||
typename Output::Scalar* d_out;
|
|
||||||
std::ptrdiff_t in_bytes = in.size() * sizeof(typename Input::Scalar);
|
|
||||||
std::ptrdiff_t out_bytes = out.size() * sizeof(typename Output::Scalar);
|
|
||||||
|
|
||||||
hipMalloc((void**)(&d_in), in_bytes);
|
|
||||||
hipMalloc((void**)(&d_out), out_bytes);
|
|
||||||
|
|
||||||
hipMemcpy(d_in, in.data(), in_bytes, hipMemcpyHostToDevice);
|
|
||||||
hipMemcpy(d_out, out.data(), out_bytes, hipMemcpyHostToDevice);
|
|
||||||
|
|
||||||
// Simple and non-optimal 1D mapping assuming n is not too large
|
|
||||||
// That's only for unit testing!
|
|
||||||
dim3 Blocks(128);
|
|
||||||
dim3 Grids( (n+int(Blocks.x)-1)/int(Blocks.x) );
|
|
||||||
|
|
||||||
hipDeviceSynchronize();
|
|
||||||
hipLaunchKernelGGL(HIP_KERNEL_NAME(run_on_hip_meta_kernel<Kernel,
|
|
||||||
typename std::decay<decltype(*d_in)>::type,
|
|
||||||
typename std::decay<decltype(*d_out)>::type>),
|
|
||||||
dim3(Grids), dim3(Blocks), 0, 0, ker, n, d_in, d_out);
|
|
||||||
hipDeviceSynchronize();
|
|
||||||
|
|
||||||
// check inputs have not been modified
|
|
||||||
hipMemcpy(const_cast<typename Input::Scalar*>(in.data()), d_in, in_bytes, hipMemcpyDeviceToHost);
|
|
||||||
hipMemcpy(out.data(), d_out, out_bytes, hipMemcpyDeviceToHost);
|
|
||||||
|
|
||||||
hipFree(d_in);
|
|
||||||
hipFree(d_out);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
template<typename Kernel, typename Input, typename Output>
|
|
||||||
void run_and_compare_to_hip(const Kernel& ker, int n, const Input& in, Output& out)
|
|
||||||
{
|
|
||||||
Input in_ref, in_hip;
|
|
||||||
Output out_ref, out_hip;
|
|
||||||
#ifndef __HIP_DEVICE_COMPILE__
|
|
||||||
in_ref = in_hip = in;
|
|
||||||
out_ref = out_hip = out;
|
|
||||||
#endif
|
|
||||||
run_on_cpu (ker, n, in_ref, out_ref);
|
|
||||||
run_on_hip(ker, n, in_hip, out_hip);
|
|
||||||
#ifndef __HIP_DEVICE_COMPILE__
|
|
||||||
VERIFY_IS_APPROX(in_ref, in_hip);
|
|
||||||
VERIFY_IS_APPROX(out_ref, out_hip);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
void ei_test_init_hip()
|
|
||||||
{
|
|
||||||
int device = 0;
|
|
||||||
hipDeviceProp_t deviceProp;
|
|
||||||
hipGetDeviceProperties(&deviceProp, device);
|
|
||||||
std::cout << "HIP device info:\n";
|
|
||||||
std::cout << " name: " << deviceProp.name << "\n";
|
|
||||||
std::cout << " capability: " << deviceProp.major << "." << deviceProp.minor << "\n";
|
|
||||||
std::cout << " multiProcessorCount: " << deviceProp.multiProcessorCount << "\n";
|
|
||||||
std::cout << " maxThreadsPerMultiProcessor: " << deviceProp.maxThreadsPerMultiProcessor << "\n";
|
|
||||||
std::cout << " warpSize: " << deviceProp.warpSize << "\n";
|
|
||||||
std::cout << " regsPerBlock: " << deviceProp.regsPerBlock << "\n";
|
|
||||||
std::cout << " concurrentKernels: " << deviceProp.concurrentKernels << "\n";
|
|
||||||
std::cout << " clockRate: " << deviceProp.clockRate << "\n";
|
|
||||||
std::cout << " canMapHostMemory: " << deviceProp.canMapHostMemory << "\n";
|
|
||||||
std::cout << " computeMode: " << deviceProp.computeMode << "\n";
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif // EIGEN_TEST_HIP_COMMON_H
|
|
Loading…
x
Reference in New Issue
Block a user