This commit is contained in:
Jitse Niesen 2012-09-29 17:35:15 +01:00
commit 2008f76120
66 changed files with 6808 additions and 410 deletions

View File

@ -1,165 +1,502 @@
GNU LESSER GENERAL PUBLIC LICENSE GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007 Version 2.1, February 1999
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed. of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
This version of the GNU Lesser General Public License incorporates Preamble
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions. The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
As used herein, "this License" refers to version 3 of the GNU Lesser This license, the Lesser General Public License, applies to some
General Public License, and the "GNU GPL" refers to version 3 of the GNU specially designated software packages--typically libraries--of the
General Public License. Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
"The Library" refers to a covered work governed by this License, When we speak of free software, we are referring to freedom of use,
other than an Application or a Combined Work as defined below. not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
An "Application" is any work that makes use of an interface provided To protect your rights, we need to make restrictions that forbid
by the Library, but which is not otherwise based on the Library. distributors to deny you these rights or to ask you to surrender these
Defining a subclass of a class defined by the Library is deemed a mode rights. These restrictions translate to certain responsibilities for
of using an interface provided by the Library. you if you distribute copies of the library or if you modify it.
A "Combined Work" is a work produced by combining or linking an For example, if you distribute copies of the library, whether gratis
Application with the Library. The particular version of the Library or for a fee, you must give the recipients all the rights that we gave
with which the Combined Work was made is also called the "Linked you. You must make sure that they, too, receive or can get the source
Version". code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
The "Minimal Corresponding Source" for a Combined Work means the We protect your rights with a two-step method: (1) we copyright the
Corresponding Source for the Combined Work, excluding any source code library, and (2) we offer you this license, which gives you legal
for portions of the Combined Work that, considered in isolation, are permission to copy, distribute and/or modify the library.
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the To protect each distributor, we want to make it very clear that
object code and/or source code for the Application, including any data there is no warranty for the free library. Also, if the library is
and utility programs needed for reproducing the Combined Work from the modified by someone else and passed on, the recipients should know
Application, but excluding the System Libraries of the Combined Work. that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
1. Exception to Section 3 of the GNU GPL. Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
You may convey a covered work under sections 3 and 4 of this License When a program is linked with a library, whether statically or using
without being bound by section 3 of the GNU GPL. a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
2. Conveying Modified Versions. We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
If you modify a copy of the Library, and, in your modifications, a For example, on rare occasions, there may be a special need to
facility refers to a function or data to be supplied by an Application encourage the widest possible use of a certain library, so that it becomes
that uses the facility (other than as an argument passed when the a de-facto standard. To achieve this, non-free programs must be
facility is invoked), then you may convey a copy of the modified allowed to use the library. A more frequent case is that a free
version: library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
a) under this License, provided that you make a good faith effort to In other cases, permission to use a particular library in non-free
ensure that, in the event an Application does not supply the programs enables a greater number of people to use a large body of
function or data, the facility still operates, and performs free software. For example, permission to use the GNU C Library in
whatever part of its purpose remains meaningful, or non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
b) under the GNU GPL, with none of the additional permissions of Although the Lesser General Public License is Less protective of the
this License applicable to that copy. users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
3. Object Code Incorporating Material from Library Header Files. The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
The object code form of an Application may incorporate material from 0. This License Agreement applies to any software library or other
a header file that is part of the Library. You may convey such object program which contains a notice placed by the copyright holder or
code under terms of your choice, provided that, if the incorporated other authorized party saying it may be distributed under the terms of
material is not limited to numerical parameters, data structure this Lesser General Public License (also called "this License").
layouts and accessors, or small macros, inline functions and templates Each licensee is addressed as "you".
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the A "library" means a collection of software functions and/or data
Library is used in it and that the Library and its use are prepared so as to be conveniently linked with application programs
covered by this License. (which use some of those functions and data) to form executables.
b) Accompany the object code with a copy of the GNU GPL and this license The "Library", below, refers to any such software library or work
document. which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
4. Combined Works. "Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
You may convey a Combined Work under terms of your choice that, Activities other than copying, distribution and modification are not
taken together, effectively do not restrict modification of the covered by this License; they are outside its scope. The act of
portions of the Library contained in the Combined Work and reverse running a program using the Library is not restricted, and output from
engineering for debugging such modifications, if you also do each of such a program is covered only if its contents constitute a work based
the following: on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
a) Give prominent notice with each copy of the Combined Work that 1. You may copy and distribute verbatim copies of the Library's
the Library is used in it and that the Library and its use are complete source code as you receive it, in any medium, provided that
covered by this License. you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
b) Accompany the Combined Work with a copy of the GNU GPL and this license all the notices that refer to this License and to the absence of any
document. warranty; and distribute a copy of this License along with the
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library. Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).
To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random Hacker.
<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice
That's all there is to it!

View File

@ -5,6 +5,9 @@ Eigen is primarily MPL2 licensed. See COPYING.MPL2 and these links:
Some files contain third-party code under BSD or LGPL licenses, whence the other Some files contain third-party code under BSD or LGPL licenses, whence the other
COPYING.* files here. COPYING.* files here.
All the LGPL code is either LGPL 2.1-only, or LGPL 2.1-or-later.
For this reason, the COPYING.LGPL file contains the LGPL 2.1 text.
If you want to guarantee that the Eigen code that you are #including is licensed If you want to guarantee that the Eigen code that you are #including is licensed
under the MPL2 and possibly more permissive licenses (like BSD), #define this under the MPL2 and possibly more permissive licenses (like BSD), #define this
preprocessor symbol: preprocessor symbol:

View File

@ -87,19 +87,25 @@
// so, to avoid compile errors when windows.h is included after Eigen/Core, ensure intrinsics are extern "C" here too. // so, to avoid compile errors when windows.h is included after Eigen/Core, ensure intrinsics are extern "C" here too.
// notice that since these are C headers, the extern "C" is theoretically needed anyways. // notice that since these are C headers, the extern "C" is theoretically needed anyways.
extern "C" { extern "C" {
#include <emmintrin.h> // In theory we should only include immintrin.h and not the other *mmintrin.h header files directly.
#include <xmmintrin.h> // Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus:
#ifdef EIGEN_VECTORIZE_SSE3 #ifdef __INTEL_COMPILER
#include <pmmintrin.h> #include <immintrin.h>
#endif #else
#ifdef EIGEN_VECTORIZE_SSSE3 #include <emmintrin.h>
#include <tmmintrin.h> #include <xmmintrin.h>
#endif #ifdef EIGEN_VECTORIZE_SSE3
#ifdef EIGEN_VECTORIZE_SSE4_1 #include <pmmintrin.h>
#include <smmintrin.h> #endif
#endif #ifdef EIGEN_VECTORIZE_SSSE3
#ifdef EIGEN_VECTORIZE_SSE4_2 #include <tmmintrin.h>
#include <nmmintrin.h> #endif
#ifdef EIGEN_VECTORIZE_SSE4_1
#include <smmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_SSE4_2
#include <nmmintrin.h>
#endif
#endif #endif
} // end extern "C" } // end extern "C"
#elif defined __ALTIVEC__ #elif defined __ALTIVEC__

26
Eigen/MetisSupport Normal file
View File

@ -0,0 +1,26 @@
#ifndef EIGEN_METISSUPPORT_MODULE_H
#define EIGEN_METISSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
extern "C" {
#include <metis.h>
}
/** \ingroup Support_modules
* \defgroup MetisSupport_Module MetisSupport module
*
* \code
* #include <Eigen/MetisSupport>
* \endcode
*/
#include "src/MetisSupport/MetisSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_METISSUPPORT_MODULE_H

View File

@ -17,7 +17,7 @@
*/ */
#include "src/OrderingMethods/Amd.h" #include "src/OrderingMethods/Amd.h"
#include "src/OrderingMethods/Ordering.h"
#include "src/Core/util/ReenableStupidWarnings.h" #include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_ORDERINGMETHODS_MODULE_H #endif // EIGEN_ORDERINGMETHODS_MODULE_H

17
Eigen/SparseLU Normal file
View File

@ -0,0 +1,17 @@
#ifndef EIGEN_SPARSELU_MODULE_H
#define EIGEN_SPARSELU_MODULE_H
#include "SparseCore"
/** \ingroup Sparse_modules
* \defgroup SparseLU_Module SparseLU module
*
*/
// Ordering interface
#include "OrderingMethods"
#include "src/SparseLU/SparseLU.h"
#endif // EIGEN_SPARSELU_MODULE_H

View File

@ -20,6 +20,7 @@ class DiagonalBase : public EigenBase<Derived>
public: public:
typedef typename internal::traits<Derived>::DiagonalVectorType DiagonalVectorType; typedef typename internal::traits<Derived>::DiagonalVectorType DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar; typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename DiagonalVectorType::RealScalar RealScalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind; typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index; typedef typename internal::traits<Derived>::Index Index;
@ -65,6 +66,17 @@ class DiagonalBase : public EigenBase<Derived>
return diagonal().cwiseInverse(); return diagonal().cwiseInverse();
} }
inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DiagonalVectorType> >
operator*(const Scalar& scalar) const
{
return diagonal() * scalar;
}
friend inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DiagonalVectorType> >
operator*(const Scalar& scalar, const DiagonalBase& other)
{
return other.diagonal() * scalar;
}
#ifdef EIGEN2_SUPPORT #ifdef EIGEN2_SUPPORT
template<typename OtherDerived> template<typename OtherDerived>
bool isApprox(const DiagonalBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const bool isApprox(const DiagonalBase<OtherDerived>& other, typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) const

View File

@ -454,7 +454,7 @@ struct functor_traits<scalar_log_op<Scalar> >
* indeed it seems better to declare m_other as a Packet and do the pset1() once * indeed it seems better to declare m_other as a Packet and do the pset1() once
* in the constructor. However, in practice: * in the constructor. However, in practice:
* - GCC does not like m_other as a Packet and generate a load every time it needs it * - GCC does not like m_other as a Packet and generate a load every time it needs it
* - on the other hand GCC is able to moves the pset1() away the loop :) * - on the other hand GCC is able to moves the pset1() outside the loop :)
* - simpler code ;) * - simpler code ;)
* (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y) * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
*/ */
@ -485,33 +485,6 @@ template<typename Scalar1,typename Scalar2>
struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> > struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> >
{ enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; }; { enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };
template<typename Scalar, bool IsInteger>
struct scalar_quotient1_impl {
typedef typename packet_traits<Scalar>::type Packet;
// FIXME default copy constructors seems bugged with std::complex<>
EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(static_cast<Scalar>(1) / other) {}
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pmul(a, pset1<Packet>(m_other)); }
const Scalar m_other;
};
template<typename Scalar>
struct functor_traits<scalar_quotient1_impl<Scalar,false> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
template<typename Scalar>
struct scalar_quotient1_impl<Scalar,true> {
// FIXME default copy constructors seems bugged with std::complex<>
EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(other) {}
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
};
template<typename Scalar>
struct functor_traits<scalar_quotient1_impl<Scalar,true> >
{ enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
/** \internal /** \internal
* \brief Template functor to divide a scalar by a fixed other one * \brief Template functor to divide a scalar by a fixed other one
* *
@ -521,14 +494,19 @@ struct functor_traits<scalar_quotient1_impl<Scalar,true> >
* \sa class CwiseUnaryOp, MatrixBase::operator/ * \sa class CwiseUnaryOp, MatrixBase::operator/
*/ */
template<typename Scalar> template<typename Scalar>
struct scalar_quotient1_op : scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger > { struct scalar_quotient1_op {
EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) typedef typename packet_traits<Scalar>::type Packet;
: scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger >(other) {} // FIXME default copy constructors seems bugged with std::complex<>
EIGEN_STRONG_INLINE scalar_quotient1_op(const scalar_quotient1_op& other) : m_other(other.m_other) { }
EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) : m_other(other) {}
EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pdiv(a, pset1<Packet>(m_other)); }
typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
}; };
template<typename Scalar> template<typename Scalar>
struct functor_traits<scalar_quotient1_op<Scalar> > struct functor_traits<scalar_quotient1_op<Scalar> >
: functor_traits<scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger> > { enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
{};
// nullary functors // nullary functors

View File

@ -240,7 +240,7 @@ template<typename Derived> class MatrixBase
// huuuge hack. make Eigen2's matrix.part<Diagonal>() work in eigen3. Problem: Diagonal is now a class template instead // huuuge hack. make Eigen2's matrix.part<Diagonal>() work in eigen3. Problem: Diagonal is now a class template instead
// of an integer constant. Solution: overload the part() method template wrt template parameters list. // of an integer constant. Solution: overload the part() method template wrt template parameters list.
template<template<typename T, int n> class U> template<template<typename T, int N> class U>
const DiagonalWrapper<ConstDiagonalReturnType> part() const const DiagonalWrapper<ConstDiagonalReturnType> part() const
{ return diagonal().asDiagonal(); } { return diagonal().asDiagonal(); }
#endif // EIGEN2_SUPPORT #endif // EIGEN2_SUPPORT

View File

@ -195,12 +195,12 @@ template<typename PlainObjectType, int Options, typename StrideType> class Ref
Base::construct(expr); Base::construct(expr);
} }
template<typename Derived> template<typename Derived>
inline Ref(const MatrixBase<Derived>& expr, inline Ref(const DenseBase<Derived>& expr,
typename internal::enable_if<bool(internal::is_lvalue<Derived>::value&&bool(Traits::template match<Derived>::MatchAtCompileTime)),Derived>::type* = 0, typename internal::enable_if<bool(internal::is_lvalue<Derived>::value&&bool(Traits::template match<Derived>::MatchAtCompileTime)),Derived>::type* = 0,
int = Derived::ThisConstantIsPrivateInPlainObjectBase) int = Derived::ThisConstantIsPrivateInPlainObjectBase)
#else #else
template<typename Derived> template<typename Derived>
inline Ref(MatrixBase<Derived>& expr) inline Ref(DenseBase<Derived>& expr)
#endif #endif
{ {
Base::construct(expr.const_cast_derived()); Base::construct(expr.const_cast_derived());
@ -221,7 +221,7 @@ template<typename PlainObjectType, int Options, typename StrideType> class Ref<c
EIGEN_DENSE_PUBLIC_INTERFACE(Ref) EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
template<typename Derived> template<typename Derived>
inline Ref(const MatrixBase<Derived>& expr) inline Ref(const DenseBase<Derived>& expr)
{ {
// std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << "," << match_helper<Derived>::InnerStrideMatch << "\n"; // std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << "," << match_helper<Derived>::InnerStrideMatch << "\n";
// std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n"; // std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n";

View File

@ -131,7 +131,6 @@ MatrixBase<Derived>::blueNorm() const
abig = internal::sqrt(abig); abig = internal::sqrt(abig);
if(abig > overfl) if(abig > overfl)
{ {
eigen_assert(false && "overflow");
return rbig; return rbig;
} }
if(amed > RealScalar(0)) if(amed > RealScalar(0))

View File

@ -511,6 +511,7 @@ template<typename Derived1, typename Derived2, bool ClearOpposite>
struct triangular_assignment_selector<Derived1, Derived2, StrictlyUpper, Dynamic, ClearOpposite> struct triangular_assignment_selector<Derived1, Derived2, StrictlyUpper, Dynamic, ClearOpposite>
{ {
typedef typename Derived1::Index Index; typedef typename Derived1::Index Index;
typedef typename Derived1::Scalar Scalar;
static inline void run(Derived1 &dst, const Derived2 &src) static inline void run(Derived1 &dst, const Derived2 &src)
{ {
for(Index j = 0; j < dst.cols(); ++j) for(Index j = 0; j < dst.cols(); ++j)
@ -520,7 +521,7 @@ struct triangular_assignment_selector<Derived1, Derived2, StrictlyUpper, Dynamic
dst.copyCoeff(i, j, src); dst.copyCoeff(i, j, src);
if (ClearOpposite) if (ClearOpposite)
for(Index i = maxi; i < dst.rows(); ++i) for(Index i = maxi; i < dst.rows(); ++i)
dst.coeffRef(i, j) = 0; dst.coeffRef(i, j) = Scalar(0);
} }
} }
}; };

View File

@ -81,7 +81,7 @@ EIGEN_DONT_INLINE static void run(
const Index peels = 2; const Index peels = 2;
const Index LhsPacketAlignedMask = LhsPacketSize-1; const Index LhsPacketAlignedMask = LhsPacketSize-1;
const Index ResPacketAlignedMask = ResPacketSize-1; const Index ResPacketAlignedMask = ResPacketSize-1;
const Index PeelAlignedMask = ResPacketSize*peels-1; // const Index PeelAlignedMask = ResPacketSize*peels-1;
const Index size = rows; const Index size = rows;
// How many coeffs of the result do we have to skip to be aligned. // How many coeffs of the result do we have to skip to be aligned.
@ -335,7 +335,7 @@ EIGEN_DONT_INLINE static void run(
const Index peels = 2; const Index peels = 2;
const Index RhsPacketAlignedMask = RhsPacketSize-1; const Index RhsPacketAlignedMask = RhsPacketSize-1;
const Index LhsPacketAlignedMask = LhsPacketSize-1; const Index LhsPacketAlignedMask = LhsPacketSize-1;
const Index PeelAlignedMask = RhsPacketSize*peels-1; // const Index PeelAlignedMask = RhsPacketSize*peels-1;
const Index depth = cols; const Index depth = cols;
// How many coeffs of the result do we have to skip to be aligned. // How many coeffs of the result do we have to skip to be aligned.

View File

@ -322,9 +322,9 @@ template<typename T, int n=1, typename PlainObject = typename eval<T>::type> str
// it's important that this value can still be squared without integer overflowing. // it's important that this value can still be squared without integer overflowing.
DynamicAsInteger = 10000, DynamicAsInteger = 10000,
ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost, ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? DynamicAsInteger : ScalarReadCost, ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? int(DynamicAsInteger) : int(ScalarReadCost),
CoeffReadCost = traits<T>::CoeffReadCost, CoeffReadCost = traits<T>::CoeffReadCost,
CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? DynamicAsInteger : CoeffReadCost, CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? int(DynamicAsInteger) : int(CoeffReadCost),
NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n, NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n,
CostEvalAsInteger = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger, CostEvalAsInteger = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger,
CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger

View File

@ -153,16 +153,21 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose(); Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
} }
// Eq. (42) if (with_scaling)
const Scalar c = 1/src_var * svd.singularValues().dot(S); {
// Eq. (42)
const Scalar c = 1/src_var * svd.singularValues().dot(S);
// Eq. (41) // Eq. (41)
// Note that we first assign dst_mean to the destination so that there no need Rt.col(m).head(m) = dst_mean;
// for a temporary. Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean;
Rt.col(m).head(m) = dst_mean; Rt.block(0,0,m,m) *= c;
Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean; }
else
if (with_scaling) Rt.block(0,0,m,m) *= c; {
Rt.col(m).head(m) = dst_mean;
Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean;
}
return Rt; return Rt;
} }

View File

@ -39,10 +39,11 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
int maxIters = iters; int maxIters = iters;
int n = mat.cols(); int n = mat.cols();
x = precond.solve(x);
VectorType r = rhs - mat * x; VectorType r = rhs - mat * x;
VectorType r0 = r; VectorType r0 = r;
RealScalar r0_sqnorm = r0.squaredNorm(); RealScalar r0_sqnorm = rhs.squaredNorm();
Scalar rho = 1; Scalar rho = 1;
Scalar alpha = 1; Scalar alpha = 1;
Scalar w = 1; Scalar w = 1;
@ -223,7 +224,8 @@ public:
template<typename Rhs,typename Dest> template<typename Rhs,typename Dest>
void _solve(const Rhs& b, Dest& x) const void _solve(const Rhs& b, Dest& x) const
{ {
x.setZero(); // x.setZero();
x = b;
_solveWithGuess(b,x); _solveWithGuess(b,x);
} }

View File

@ -10,8 +10,56 @@
#ifndef EIGEN_INCOMPLETE_LUT_H #ifndef EIGEN_INCOMPLETE_LUT_H
#define EIGEN_INCOMPLETE_LUT_H #define EIGEN_INCOMPLETE_LUT_H
namespace Eigen { namespace Eigen {
namespace internal {
/**
* Compute a quick-sort split of a vector
* On output, the vector row is permuted such that its elements satisfy
* abs(row(i)) >= abs(row(ncut)) if i<ncut
* abs(row(i)) <= abs(row(ncut)) if i>ncut
* \param row The vector of values
* \param ind The array of index for the elements in @p row
* \param ncut The number of largest elements to keep
**/
template <typename VectorV, typename VectorI>
int QuickSplit(VectorV &row, VectorI &ind, int ncut)
{
typedef typename VectorV::RealScalar RealScalar;
using std::swap;
int mid;
int n = row.size(); /* length of the vector */
int first, last ;
ncut--; /* to fit the zero-based indices */
first = 0;
last = n-1;
if (ncut < first || ncut > last ) return 0;
do {
mid = first;
RealScalar abskey = std::abs(row(mid));
for (int j = first + 1; j <= last; j++) {
if ( std::abs(row(j)) > abskey) {
++mid;
swap(row(mid), row(j));
swap(ind(mid), ind(j));
}
}
/* Interchange for the pivot element */
swap(row(mid), row(first));
swap(ind(mid), ind(first));
if (mid > ncut) last = mid - 1;
else if (mid < ncut ) first = mid + 1;
} while (mid != ncut );
return 0; /* mid is equal to ncut */
}
}// end namespace internal
/** /**
* \brief Incomplete LU factorization with dual-threshold strategy * \brief Incomplete LU factorization with dual-threshold strategy
* During the numerical factorization, two dropping rules are used : * During the numerical factorization, two dropping rules are used :
@ -126,10 +174,6 @@ class IncompleteLUT : internal::noncopyable
protected: protected:
template <typename VectorV, typename VectorI>
int QuickSplit(VectorV &row, VectorI &ind, int ncut);
/** keeps off-diagonal entries; drops diagonal entries */ /** keeps off-diagonal entries; drops diagonal entries */
struct keep_diag { struct keep_diag {
inline bool operator() (const Index& row, const Index& col, const Scalar&) const inline bool operator() (const Index& row, const Index& col, const Scalar&) const
@ -171,51 +215,6 @@ void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
this->m_fillfactor = fillfactor; this->m_fillfactor = fillfactor;
} }
/**
* Compute a quick-sort split of a vector
* On output, the vector row is permuted such that its elements satisfy
* abs(row(i)) >= abs(row(ncut)) if i<ncut
* abs(row(i)) <= abs(row(ncut)) if i>ncut
* \param row The vector of values
* \param ind The array of index for the elements in @p row
* \param ncut The number of largest elements to keep
**/
template <typename Scalar>
template <typename VectorV, typename VectorI>
int IncompleteLUT<Scalar>::QuickSplit(VectorV &row, VectorI &ind, int ncut)
{
using std::swap;
int mid;
int n = row.size(); /* length of the vector */
int first, last ;
ncut--; /* to fit the zero-based indices */
first = 0;
last = n-1;
if (ncut < first || ncut > last ) return 0;
do {
mid = first;
RealScalar abskey = std::abs(row(mid));
for (int j = first + 1; j <= last; j++) {
if ( std::abs(row(j)) > abskey) {
++mid;
swap(row(mid), row(j));
swap(ind(mid), ind(j));
}
}
/* Interchange for the pivot element */
swap(row(mid), row(first));
swap(ind(mid), ind(first));
if (mid > ncut) last = mid - 1;
else if (mid < ncut ) first = mid + 1;
} while (mid != ncut );
return 0; /* mid is equal to ncut */
}
template <typename Scalar> template <typename Scalar>
template<typename _MatrixType> template<typename _MatrixType>
void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat) void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
@ -400,7 +399,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
len = (std::min)(sizel, nnzL); len = (std::min)(sizel, nnzL);
typename Vector::SegmentReturnType ul(u.segment(0, sizel)); typename Vector::SegmentReturnType ul(u.segment(0, sizel));
typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel)); typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
QuickSplit(ul, jul, len); internal::QuickSplit(ul, jul, len);
// store the largest m_fill elements of the L part // store the largest m_fill elements of the L part
m_lu.startVec(ii); m_lu.startVec(ii);
@ -429,7 +428,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
len = (std::min)(sizeu, nnzU); len = (std::min)(sizeu, nnzU);
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1)); typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1)); typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
QuickSplit(uu, juu, len); internal::QuickSplit(uu, juu, len);
// store the largest elements of the U part // store the largest elements of the U part
for(int k = ii + 1; k < ii + len; k++) for(int k = ii + 1; k < ii + len; k++)

View File

@ -0,0 +1,6 @@
FILE(GLOB Eigen_MetisSupport_SRCS "*.h")
INSTALL(FILES
${Eigen_MetisSupport_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/MetisSupport COMPONENT Devel
)

View File

@ -0,0 +1,138 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef METIS_SUPPORT_H
#define METIS_SUPPORT_H
namespace Eigen {
/**
* Get the fill-reducing ordering from the METIS package
*
* If A is the original matrix and Ap is the permuted matrix,
* the fill-reducing permutation is defined as follows :
* Row (column) i of A is the matperm(i) row (column) of Ap.
* WARNING: As computed by METIS, this corresponds to the vector iperm (instead of perm)
*/
template <typename Index>
class MetisOrdering
{
public:
typedef PermutationMatrix<Dynamic,Dynamic,Index> PermutationType;
typedef Matrix<Index,Dynamic,1> IndexVector;
template <typename MatrixType>
void get_symmetrized_graph(const MatrixType& A)
{
Index m = A.cols();
// Get the transpose of the input matrix
MatrixType At = A.transpose();
// Get the number of nonzeros elements in each row/col of At+A
Index TotNz = 0;
IndexVector visited(m);
visited.setConstant(-1);
for (int j = 0; j < m; j++)
{
// Compute the union structure of of A(j,:) and At(j,:)
visited(j) = j; // Do not include the diagonal element
// Get the nonzeros in row/column j of A
for (typename MatrixType::InnerIterator it(A, j); it; ++it)
{
Index idx = it.index(); // Get the row index (for column major) or column index (for row major)
if (visited(idx) != j )
{
visited(idx) = j;
++TotNz;
}
}
//Get the nonzeros in row/column j of At
for (typename MatrixType::InnerIterator it(At, j); it; ++it)
{
Index idx = it.index();
if(visited(idx) != j)
{
visited(idx) = j;
++TotNz;
}
}
}
// Reserve place for A + At
m_indexPtr.resize(m+1);
m_innerIndices.resize(TotNz);
// Now compute the real adjacency list of each column/row
visited.setConstant(-1);
Index CurNz = 0;
for (int j = 0; j < m; j++)
{
m_indexPtr(j) = CurNz;
visited(j) = j; // Do not include the diagonal element
// Add the pattern of row/column j of A to A+At
for (typename MatrixType::InnerIterator it(A,j); it; ++it)
{
Index idx = it.index(); // Get the row index (for column major) or column index (for row major)
if (visited(idx) != j )
{
visited(idx) = j;
m_innerIndices(CurNz) = idx;
CurNz++;
}
}
//Add the pattern of row/column j of At to A+At
for (typename MatrixType::InnerIterator it(At, j); it; ++it)
{
Index idx = it.index();
if(visited(idx) != j)
{
visited(idx) = j;
m_innerIndices(CurNz) = idx;
++CurNz;
}
}
}
m_indexPtr(m) = CurNz;
}
template <typename MatrixType>
void operator() (const MatrixType& A, PermutationType& matperm)
{
Index m = A.cols();
IndexVector perm(m),iperm(m);
// First, symmetrize the matrix graph.
get_symmetrized_graph(A);
int output_error;
// Call the fill-reducing routine from METIS
output_error = METIS_NodeND(&m, m_indexPtr.data(), m_innerIndices.data(), NULL, NULL, perm.data(), iperm.data());
if(output_error != METIS_OK)
{
//FIXME The ordering interface should define a class of possible errors
std::cerr << "ERROR WHILE CALLING THE METIS PACKAGE \n";
return;
}
// Get the fill-reducing permutation
//NOTE: If Ap is the permuted matrix then perm and iperm vectors are defined as follows
// Row (column) i of Ap is the perm(i) row(column) of A, and row (column) i of A is the iperm(i) row(column) of Ap
// To be consistent with the use of the permutation in SparseLU module, we thus keep the iperm vector
matperm.resize(m);
for (int j = 0; j < m; j++)
matperm.indices()(j) = iperm(j);
}
protected:
IndexVector m_indexPtr; // Pointer to the adjacenccy list of each row/column
IndexVector m_innerIndices; // Adjacency list
};
}// end namespace eigen
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,158 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ORDERING_H
#define EIGEN_ORDERING_H
#include "Amd.h"
namespace Eigen {
#include "Eigen_Colamd.h"
namespace internal {
/**
* Get the symmetric pattern A^T+A from the input matrix A.
* FIXME: The values should not be considered here
*/
template<typename MatrixType>
void ordering_helper_at_plus_a(const MatrixType& mat, MatrixType& symmat)
{
MatrixType C;
C = mat.transpose(); // NOTE: Could be costly
for (int i = 0; i < C.rows(); i++)
{
for (typename MatrixType::InnerIterator it(C, i); it; ++it)
it.valueRef() = 0.0;
}
symmat = C + mat;
}
}
/**
* Get the approximate minimum degree ordering
* If the matrix is not structurally symmetric, an ordering of A^T+A is computed
* \tparam Index The type of indices of the matrix
*/
template <typename Index>
class AMDOrdering
{
public:
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
/** Compute the permutation vector from a sparse matrix
* This routine is much faster if the input matrix is column-major
*/
template <typename MatrixType>
void operator()(const MatrixType& mat, PermutationType& perm)
{
// Compute the symmetric pattern
SparseMatrix<typename MatrixType::Scalar, ColMajor, Index> symm;
internal::ordering_helper_at_plus_a(mat,symm);
// Call the AMD routine
//m_mat.prune(keep_diag());
internal::minimum_degree_ordering(symm, perm);
}
/** Compute the permutation with a selfadjoint matrix */
template <typename SrcType, unsigned int SrcUpLo>
void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm)
{
SparseMatrix<typename SrcType::Scalar, ColMajor, Index> C = mat;
// Call the AMD routine
// m_mat.prune(keep_diag()); //Remove the diagonal elements
internal::minimum_degree_ordering(C, perm);
}
};
/**
* Get the natural ordering
*
*NOTE Returns an empty permutation matrix
* \tparam Index The type of indices of the matrix
*/
template <typename Index>
class NaturalOrdering
{
public:
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
/** Compute the permutation vector from a column-major sparse matrix */
template <typename MatrixType>
void operator()(const MatrixType& mat, PermutationType& perm)
{
perm.resize(0);
}
};
/**
* Get the column approximate minimum degree ordering
* The matrix should be in column-major format
*/
template<typename Index>
class COLAMDOrdering;
#include "Eigen_Colamd.h"
template<typename Index>
class COLAMDOrdering
{
public:
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
typedef Matrix<Index, Dynamic, 1> IndexVector;
/** Compute the permutation vector form a sparse matrix */
template <typename MatrixType>
void operator() (const MatrixType& mat, PermutationType& perm)
{
int m = mat.rows();
int n = mat.cols();
int nnz = mat.nonZeros();
// Get the recommended value of Alen to be used by colamd
int Alen = internal::colamd_recommended(nnz, m, n);
// Set the default parameters
double knobs [COLAMD_KNOBS];
int stats [COLAMD_STATS];
internal::colamd_set_defaults(knobs);
int info;
IndexVector p(n+1), A(Alen);
for(int i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
for(int i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
// Call Colamd routine to compute the ordering
info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
eigen_assert( info && "COLAMD failed " );
perm.resize(n);
for (int i = 0; i < n; i++) perm.indices()(p(i)) = i;
}
};
} // end namespace Eigen
#endif

View File

@ -469,6 +469,18 @@ class SparseMatrix
m_data.squeeze(); m_data.squeeze();
} }
/** Turns the matrix into the uncompressed mode */
void uncompress()
{
if(m_innerNonZeros != 0)
return;
m_innerNonZeros = new Index[m_outerSize];
for (int i = 0; i < m_outerSize; i++)
{
m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
}
}
/** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */ /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
{ {

View File

@ -113,9 +113,10 @@ template<typename T,int Rows> struct sparse_eval<T,Rows,1> {
template<typename T,int Rows,int Cols> struct sparse_eval { template<typename T,int Rows,int Cols> struct sparse_eval {
typedef typename traits<T>::Scalar _Scalar; typedef typename traits<T>::Scalar _Scalar;
enum { _Flags = traits<T>::Flags }; typedef typename traits<T>::Index _Index;
enum { _Options = ((traits<T>::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor };
public: public:
typedef SparseMatrix<_Scalar, _Flags> type; typedef SparseMatrix<_Scalar, _Options, _Index> type;
}; };
template<typename T> struct sparse_eval<T,1,1> { template<typename T> struct sparse_eval<T,1,1> {

View File

@ -0,0 +1,6 @@
FILE(GLOB Eigen_SparseLU_SRCS "*.h")
INSTALL(FILES
${Eigen_SparseLU_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/SparseLU COMPONENT Devel
)

View File

@ -0,0 +1,630 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_LU_H
#define EIGEN_SPARSE_LU_H
namespace Eigen {
// Data structure needed by all routines
#include "SparseLU_Structs.h"
#include "SparseLU_Matrix.h"
// Base structure containing all the factorization routines
#include "SparseLUBase.h"
/**
* \ingroup SparseLU_Module
* \brief Sparse supernodal LU factorization for general matrices
*
* This class implements the supernodal LU factorization for general matrices.
* It uses the main techniques from the sequential SuperLU package
* (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
* and complex arithmetics with single and double precision, depending on the
* scalar type of your input matrix.
* The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
* It benefits directly from the built-in high-performant Eigen BLAS routines.
* Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
* enable a better optimization from the compiler. For best performance,
* you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
*
* An important parameter of this class is the ordering method. It is used to reorder the columns
* (and eventually the rows) of the matrix to reduce the number of new elements that are created during
* numerical factorization. The cheapest method available is COLAMD.
* See \link Ordering_Modules the Ordering module \endlink for the list of
* built-in and external ordering methods.
*
* Simple example with key steps
* \code
* VectorXd x(n), b(n);
* SparseMatrix<double, ColMajor> A;
* SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<int> > solver;
* // fill A and b;
* // Compute the ordering permutation vector from the structural pattern of A
* solver.analyzePattern(A);
* // Compute the numerical factorization
* solver.factorize(A);
* //Use the factors to solve the linear system
* x = solver.solve(b);
* \endcode
*
* \WARNING The input matrix A should be in a \b compressed and \b column-major form.
* Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
*
* \NOTE Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
* For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
* If this is the case for your matrices, you can try the basic scaling method at
* "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
*
* \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
* \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS
*
*
* \sa \ref TutorialSparseDirectSolvers
* \sa \ref Ordering_Modules
*/
template <typename _MatrixType, typename _OrderingType>
class SparseLU
{
public:
typedef _MatrixType MatrixType;
typedef _OrderingType OrderingType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar,ColMajor,Index> NCMatrix;
typedef SuperNodalMatrix<Scalar, Index> SCMatrix;
typedef Matrix<Scalar,Dynamic,1> ScalarVector;
typedef Matrix<Index,Dynamic,1> IndexVector;
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
public:
SparseLU():m_isInitialized(true),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0)
{
initperfvalues();
}
SparseLU(const MatrixType& matrix):m_isInitialized(true),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0)
{
initperfvalues();
compute(matrix);
}
~SparseLU()
{
// Free all explicit dynamic pointers
}
void analyzePattern (const MatrixType& matrix);
void factorize (const MatrixType& matrix);
void simplicialfactorize(const MatrixType& matrix);
/**
* Compute the symbolic and numeric factorization of the input sparse matrix.
* The input matrix should be in column-major storage.
*/
void compute (const MatrixType& matrix)
{
// Analyze
analyzePattern(matrix);
//Factorize
factorize(matrix);
}
inline Index rows() const { return m_mat.rows(); }
inline Index cols() const { return m_mat.cols(); }
/** Indicate that the pattern of the input matrix is symmetric */
void isSymmetric(bool sym)
{
m_symmetricmode = sym;
}
/** Set the threshold used for a diagonal entry to be an acceptable pivot. */
void diagPivotThresh(RealScalar thresh)
{
m_diagpivotthresh = thresh;
}
/** Return the number of nonzero elements in the L factor */
int nnzL()
{
if (m_factorizationIsOk)
return m_nnzL;
else
{
std::cerr<<"Numerical factorization should be done before\n";
return 0;
}
}
/** Return the number of nonzero elements in the U factor */
int nnzU()
{
if (m_factorizationIsOk)
return m_nnzU;
else
{
std::cerr<<"Numerical factorization should be done before\n";
return 0;
}
}
/** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::solve_retval<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const
{
eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
eigen_assert(rows()==B.rows()
&& "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
return internal::solve_retval<SparseLU, Rhs>(*this, B.derived());
}
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the PaStiX reports a problem
* \c InvalidInput if the input matrix is invalid
*
* \sa iparm()
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
template<typename Rhs, typename Dest>
bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &_X) const
{
Dest& X(_X.derived());
eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
int nrhs = B.cols();
Index n = B.rows();
// Permute the right hand side to form X = Pr*B
// on return, X is overwritten by the computed solution
X.resize(n,nrhs);
for(int j = 0; j < nrhs; ++j)
X.col(j) = m_perm_r * B.col(j);
//Forward substitution with L
m_Lstore.solveInPlace(X);
// Backward solve with U
for (int k = m_Lstore.nsuper(); k >= 0; k--)
{
Index fsupc = m_Lstore.supToCol()[k];
Index istart = m_Lstore.rowIndexPtr()[fsupc];
Index nsupr = m_Lstore.rowIndexPtr()[fsupc+1] - istart;
Index nsupc = m_Lstore.supToCol()[k+1] - fsupc;
Index luptr = m_Lstore.colIndexPtr()[fsupc];
if (nsupc == 1)
{
for (int j = 0; j < nrhs; j++)
{
X(fsupc, j) /= m_Lstore.valuePtr()[luptr];
}
}
else
{
Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(m_Lstore.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
Map< Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
U = A.template triangularView<Upper>().solve(U);
}
for (int j = 0; j < nrhs; ++j)
{
for (int jcol = fsupc; jcol < fsupc + nsupc; jcol++)
{
typename MappedSparseMatrix<Scalar>::InnerIterator it(m_Ustore, jcol);
for ( ; it; ++it)
{
Index irow = it.index();
X(irow, j) -= X(jcol, j) * it.value();
}
}
}
} // End For U-solve
// Permute back the solution
for (int j = 0; j < nrhs; ++j)
X.col(j) = m_perm_c.inverse() * X.col(j);
return true;
}
protected:
// Functions
void initperfvalues()
{
m_perfv.panel_size = 12;
m_perfv.relax = 1;
m_perfv.maxsuper = 100;
m_perfv.rowblk = 200;
m_perfv.colblk = 60;
m_perfv.fillfactor = 20;
}
// Variables
mutable ComputationInfo m_info;
bool m_isInitialized;
bool m_factorizationIsOk;
bool m_analysisIsOk;
NCMatrix m_mat; // The input (permuted ) matrix
SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
MappedSparseMatrix<Scalar> m_Ustore; // The upper triangular matrix
PermutationType m_perm_c; // Column permutation
PermutationType m_perm_r ; // Row permutation
IndexVector m_etree; // Column elimination tree
LU_GlobalLU_t<IndexVector, ScalarVector> m_glu;
// SuperLU/SparseLU options
bool m_symmetricmode;
// values for performance
LU_perfvalues m_perfv;
RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
int m_nnzL, m_nnzU; // Nonzeros in L and U factors
private:
// Copy constructor
SparseLU (SparseLU& ) {}
}; // End class SparseLU
// Functions needed by the anaysis phase
/**
* Compute the column permutation to minimize the fill-in
*
* - Apply this permutation to the input matrix -
*
* - Compute the column elimination tree on the permuted matrix
*
* - Postorder the elimination tree and the column permutation
*
*/
template <typename MatrixType, typename OrderingType>
void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
{
//TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
OrderingType ord;
ord(mat,m_perm_c);
// Apply the permutation to the column of the input matrix
// m_mat = mat * m_perm_c.inverse(); //FIXME It should be less expensive here to permute only the structural pattern of the matrix
//First copy the whole input matrix.
m_mat = mat;
m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
//Then, permute only the column pointers
for (int i = 0; i < mat.cols(); i++)
{
m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = mat.outerIndexPtr()[i];
m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = mat.outerIndexPtr()[i+1] - mat.outerIndexPtr()[i];
}
// Compute the column elimination tree of the permuted matrix
/*if (m_etree.size() == 0) */m_etree.resize(m_mat.cols());
SparseLUBase<Scalar,Index>::LU_sp_coletree(m_mat, m_etree);
// In symmetric mode, do not do postorder here
if (!m_symmetricmode) {
IndexVector post, iwork;
// Post order etree
SparseLUBase<Scalar,Index>::LU_TreePostorder(m_mat.cols(), m_etree, post);
// Renumber etree in postorder
int m = m_mat.cols();
iwork.resize(m+1);
for (int i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
m_etree = iwork;
// Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
PermutationType post_perm(m); //FIXME Use directly a constructor with post
for (int i = 0; i < m; i++)
post_perm.indices()(i) = post(i);
// Combine the two permutations : postorder the permutation for future use
m_perm_c = post_perm * m_perm_c;
} // end postordering
m_analysisIsOk = true;
}
// Functions needed by the numerical factorization phase
/**
* - Numerical factorization
* - Interleaved with the symbolic factorization
* On exit, info is
*
* = 0: successful factorization
*
* > 0: if info = i, and i is
*
* <= A->ncol: U(i,i) is exactly zero. The factorization has
* been completed, but the factor U is exactly singular,
* and division by zero will occur if it is used to solve a
* system of equations.
*
* > A->ncol: number of bytes allocated when memory allocation
* failure occurred, plus A->ncol. If lwork = -1, it is
* the estimated amount of space needed, plus A->ncol.
*/
template <typename MatrixType, typename OrderingType>
void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
{
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
typedef typename IndexVector::Scalar Index;
// Apply the column permutation computed in analyzepattern()
// m_mat = matrix * m_perm_c.inverse();
m_mat = matrix;
m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
//Then, permute only the column pointers
for (int i = 0; i < matrix.cols(); i++)
{
m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = matrix.outerIndexPtr()[i];
m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = matrix.outerIndexPtr()[i+1] - matrix.outerIndexPtr()[i];
}
int m = m_mat.rows();
int n = m_mat.cols();
int nnz = m_mat.nonZeros();
int maxpanel = m_perfv.panel_size * m;
// Allocate working storage common to the factor routines
int lwork = 0;
int info = SparseLUBase<Scalar,Index>::LUMemInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
if (info)
{
std::cerr << "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
m_factorizationIsOk = false;
return ;
}
// Set up pointers for integer working arrays
IndexVector segrep(m); segrep.setZero();
IndexVector parent(m); parent.setZero();
IndexVector xplore(m); xplore.setZero();
IndexVector repfnz(maxpanel);
IndexVector panel_lsub(maxpanel);
IndexVector xprune(n); xprune.setZero();
IndexVector marker(m*LU_NO_MARKER); marker.setZero();
repfnz.setConstant(-1);
panel_lsub.setConstant(-1);
// Set up pointers for scalar working arrays
ScalarVector dense;
dense.setZero(maxpanel);
ScalarVector tempv;
tempv.setZero(LU_NUM_TEMPV(m, m_perfv.panel_size, m_perfv.maxsuper, m_perfv.rowblk) );
// Compute the inverse of perm_c
PermutationType iperm_c(m_perm_c.inverse());
// Identify initial relaxed snodes
IndexVector relax_end(n);
if ( m_symmetricmode == true )
SparseLUBase<Scalar,Index>::LU_heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
else
SparseLUBase<Scalar,Index>::LU_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
m_perm_r.resize(m);
m_perm_r.indices().setConstant(-1);
marker.setConstant(-1);
m_glu.supno(0) = IND_EMPTY; m_glu.xsup.setConstant(0);
m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
// Work on one 'panel' at a time. A panel is one of the following :
// (a) a relaxed supernode at the bottom of the etree, or
// (b) panel_size contiguous columns, <panel_size> defined by the user
int jcol,kcol;
IndexVector panel_histo(n);
Index nextu, nextlu, jsupno, fsupc, new_next;
Index pivrow; // Pivotal row number in the original row matrix
int nseg1; // Number of segments in U-column above panel row jcol
int nseg; // Number of segments in each U-column
int irep, icol;
int i, k, jj;
for (jcol = 0; jcol < n; )
{
if (relax_end(jcol) != IND_EMPTY)
{ // Starting a relaxed node from jcol
kcol = relax_end(jcol); // End index of the relaxed snode
// Factorize the relaxed supernode(jcol:kcol)
// First, determine the union of the row structure of the snode
info = SparseLUBase<Scalar,Index>::LU_snode_dfs(jcol, kcol, m_mat, xprune, marker, m_glu);
if ( info )
{
std::cerr << "MEMORY ALLOCATION FAILED IN SNODE_DFS() \n";
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
nextu = m_glu.xusub(jcol); //starting location of column jcol in ucol
nextlu = m_glu.xlusup(jcol); //Starting location of column jcol in lusup (rectangular supernodes)
jsupno = m_glu.supno(jcol); // Supernode number which column jcol belongs to
fsupc = m_glu.xsup(jsupno); //First column number of the current supernode
new_next = nextlu + (m_glu.xlsub(fsupc+1)-m_glu.xlsub(fsupc)) * (kcol - jcol + 1);
int mem;
while (new_next > m_glu.nzlumax )
{
mem = SparseLUBase<Scalar,Index>::LUMemXpand(m_glu.lusup, m_glu.nzlumax, nextlu, LUSUP, m_glu.num_expansions);
if (mem)
{
std::cerr << "MEMORY ALLOCATION FAILED FOR L FACTOR \n";
m_factorizationIsOk = false;
return;
}
}
// Now, left-looking factorize each column within the snode
for (icol = jcol; icol<=kcol; icol++){
m_glu.xusub(icol+1) = nextu;
// Scatter into SPA dense(*)
for (typename MatrixType::InnerIterator it(m_mat, icol); it; ++it)
dense(it.row()) = it.value();
// Numeric update within the snode
SparseLUBase<Scalar,Index>::LU_snode_bmod(icol, fsupc, dense, m_glu);
// Eliminate the current column
info = SparseLUBase<Scalar,Index>::LU_pivotL(icol, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
if ( info )
{
m_info = NumericalIssue;
std::cerr<< "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT " << info <<std::endl;
m_factorizationIsOk = false;
return;
}
}
jcol = icol; // The last column te be eliminated
}
else
{ // Work on one panel of panel_size columns
// Adjust panel size so that a panel won't overlap with the next relaxed snode.
int panel_size = m_perfv.panel_size; // upper bound on panel width
for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
{
if (relax_end(k) != IND_EMPTY)
{
panel_size = k - jcol;
break;
}
}
if (k == n)
panel_size = n - jcol;
// Symbolic outer factorization on a panel of columns
SparseLUBase<Scalar,Index>::LU_panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
// Numeric sup-panel updates in topological order
SparseLUBase<Scalar,Index>::LU_panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_perfv, m_glu);
// Sparse LU within the panel, and below the panel diagonal
for ( jj = jcol; jj< jcol + panel_size; jj++)
{
k = (jj - jcol) * m; // Column index for w-wide arrays
nseg = nseg1; // begin after all the panel segments
//Depth-first-search for the current column
VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
info = SparseLUBase<Scalar,Index>::LU_column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
if ( info )
{
std::cerr << "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() \n";
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
// Numeric updates to this column
VectorBlock<ScalarVector> dense_k(dense, k, m);
VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
info = SparseLUBase<Scalar,Index>::LU_column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
if ( info )
{
std::cerr << "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() \n";
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
// Copy the U-segments to ucol(*)
info = SparseLUBase<Scalar,Index>::LU_copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
if ( info )
{
std::cerr << "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() \n";
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
// Form the L-segment
info = SparseLUBase<Scalar,Index>::LU_pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
if ( info )
{
std::cerr<< "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT " << info <<std::endl;
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
// Prune columns (0:jj-1) using column jj
SparseLUBase<Scalar,Index>::LU_pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
// Reset repfnz for this column
for (i = 0; i < nseg; i++)
{
irep = segrep(i);
repfnz_k(irep) = IND_EMPTY;
}
} // end SparseLU within the panel
jcol += panel_size; // Move to the next panel
} // end else
} // end for -- end elimination
// Count the number of nonzeros in factors
SparseLUBase<Scalar,Index>::LU_countnz(n, m_nnzL, m_nnzU, m_glu);
// Apply permutation to the L subscripts
SparseLUBase<Scalar,Index>::LU_fixupL(n, m_perm_r.indices(), m_glu);
// Create supernode matrix L
m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
// Create the column major upper sparse matrix U;
new (&m_Ustore) MappedSparseMatrix<Scalar> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
m_info = Success;
m_factorizationIsOk = true;
}
// #include "SparseLU_simplicialfactorize.h"
namespace internal {
template<typename _MatrixType, typename Derived, typename Rhs>
struct solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
: solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
{
typedef SparseLU<_MatrixType,Derived> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
} // end namespace internal
} // End namespace Eigen
#endif

View File

@ -0,0 +1,74 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef SPARSELUBASE_H
#define SPARSELUBASE_H
/**
* Base class for sparseLU
*/
template <typename Scalar, typename Index>
struct SparseLUBase
{
typedef Matrix<Scalar,Dynamic,1> ScalarVector;
typedef Matrix<Index,Dynamic,1> IndexVector;
typedef typename ScalarVector::RealScalar RealScalar;
typedef VectorBlock<Matrix<Scalar,Dynamic,1> > BlockScalarVector;
typedef VectorBlock<Matrix<Index,Dynamic,1> > BlockIndexVector;
// typedef Ref<Matrix<Scalar,Dynamic,1> > BlockScalarVector;
// typedef Ref<Matrix<Index,Dynamic,1> > BlockIndexVector;
typedef LU_GlobalLU_t<IndexVector, ScalarVector> GlobalLU_t;
typedef SparseMatrix<Scalar,ColMajor,Index> MatrixType;
static int etree_find (int i, IndexVector& pp);
static int LU_sp_coletree(const MatrixType& mat, IndexVector& parent);
static void LU_nr_etdfs (int n, IndexVector& parent, IndexVector& first_kid, IndexVector& next_kid, IndexVector& post, int postnum);
static void LU_TreePostorder(int n, IndexVector& parent, IndexVector& post);
template <typename VectorType>
static int expand(VectorType& vec, int& length, int nbElts, int keep_prev, int& num_expansions);
static int LUMemInit(int m, int n, int annz, int lwork, int fillratio, int panel_size, GlobalLU_t& glu);
template <typename VectorType>
static int LUMemXpand(VectorType& vec, int& maxlen, int nbElts, LU_MemType memtype, int& num_expansions);
static void LU_heap_relax_snode (const int n, IndexVector& et, const int relax_columns, IndexVector& descendants, IndexVector& relax_end);
static void LU_relax_snode (const int n, IndexVector& et, const int relax_columns, IndexVector& descendants, IndexVector& relax_end);
static int LU_snode_dfs(const int jcol, const int kcol,const MatrixType& mat, IndexVector& xprune, IndexVector& marker, LU_GlobalLU_t<IndexVector, ScalarVector>& glu);
static int LU_snode_bmod (const int jcol, const int fsupc, ScalarVector& dense, GlobalLU_t& glu);
static int LU_pivotL(const int jcol, const RealScalar diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, int& pivrow, GlobalLU_t& glu);
template <typename Traits>
static void LU_dfs_kernel(const int jj, IndexVector& perm_r,
int& nseg, IndexVector& panel_lsub, IndexVector& segrep,
Ref<IndexVector> repfnz_col, IndexVector& xprune, Ref<IndexVector> marker, IndexVector& parent,
IndexVector& xplore, GlobalLU_t& glu, int& nextl_col, int krow, Traits& traits);
static void LU_panel_dfs(const int m, const int w, const int jcol, MatrixType& A, IndexVector& perm_r, int& nseg, ScalarVector& dense, IndexVector& panel_lsub, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu);
static void LU_panel_bmod(const int m, const int w, const int jcol, const int nseg, ScalarVector& dense, ScalarVector& tempv, IndexVector& segrep, IndexVector& repfnz, LU_perfvalues& perfv, GlobalLU_t& glu);
static int LU_column_dfs(const int m, const int jcol, IndexVector& perm_r, int maxsuper, int& nseg, BlockIndexVector& lsub_col, IndexVector& segrep, BlockIndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu);
static int LU_column_bmod(const int jcol, const int nseg, BlockScalarVector& dense, ScalarVector& tempv, BlockIndexVector& segrep, BlockIndexVector& repfnz, int fpanelc, GlobalLU_t& glu);
static int LU_copy_to_ucol(const int jcol, const int nseg, IndexVector& segrep, BlockIndexVector& repfnz ,IndexVector& perm_r, BlockScalarVector& dense, GlobalLU_t& glu);
static void LU_pruneL(const int jcol, const IndexVector& perm_r, const int pivrow, const int nseg, const IndexVector& segrep, BlockIndexVector& repfnz, IndexVector& xprune, GlobalLU_t& glu);
static void LU_countnz(const int n, int& nnzL, int& nnzU, GlobalLU_t& glu);
static void LU_fixupL(const int n, const IndexVector& perm_r, GlobalLU_t& glu);
};
#include "SparseLU_Coletree.h"
#include "SparseLU_Memory.h"
#include "SparseLU_heap_relax_snode.h"
#include "SparseLU_relax_snode.h"
#include "SparseLU_snode_dfs.h"
#include "SparseLU_snode_bmod.h"
#include "SparseLU_pivotL.h"
#include "SparseLU_panel_dfs.h"
#include "SparseLU_kernel_bmod.h"
#include "SparseLU_panel_bmod.h"
#include "SparseLU_column_dfs.h"
#include "SparseLU_column_bmod.h"
#include "SparseLU_copy_to_ucol.h"
#include "SparseLU_pruneL.h"
#include "SparseLU_Utils.h"
#endif

View File

@ -0,0 +1,180 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of sp_coletree.c file in SuperLU
* -- SuperLU routine (version 3.1) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* August 1, 2008
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_COLETREE_H
#define SPARSELU_COLETREE_H
/** Find the root of the tree/set containing the vertex i : Use Path halving */
template< typename Scalar,typename Index>
int SparseLUBase<Scalar,Index>::etree_find (int i, IndexVector& pp)
{
int p = pp(i); // Parent
int gp = pp(p); // Grand parent
while (gp != p)
{
pp(i) = gp; // Parent pointer on find path is changed to former grand parent
i = gp;
p = pp(i);
gp = pp(p);
}
return p;
}
/** Compute the column elimination tree of a sparse matrix
* NOTE : The matrix is supposed to be in column-major format.
*
*/
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_sp_coletree(const MatrixType& mat, IndexVector& parent)
{
int nc = mat.cols(); // Number of columns
int nr = mat.rows(); // Number of rows
IndexVector root(nc); // root of subtree of etree
root.setZero();
IndexVector pp(nc); // disjoint sets
pp.setZero(); // Initialize disjoint sets
IndexVector firstcol(nr); // First nonzero column in each row
//Compute first nonzero column in each row
int row,col;
firstcol.setConstant(nc); //for (row = 0; row < nr; firstcol(row++) = nc);
for (col = 0; col < nc; col++)
{
for (typename MatrixType::InnerIterator it(mat, col); it; ++it)
{ // Is it necessary to browse the whole matrix, the lower part should do the job ??
row = it.row();
firstcol(row) = (std::min)(firstcol(row), col);
}
}
/* Compute etree by Liu's algorithm for symmetric matrices,
except use (firstcol[r],c) in place of an edge (r,c) of A.
Thus each row clique in A'*A is replaced by a star
centered at its first vertex, which has the same fill. */
int rset, cset, rroot;
for (col = 0; col < nc; col++)
{
pp(col) = col;
cset = col;
root(cset) = col;
parent(col) = nc;
for (typename MatrixType::InnerIterator it(mat, col); it; ++it)
{ // A sequence of interleaved find and union is performed
row = firstcol(it.row());
if (row >= col) continue;
rset = etree_find(row, pp); // Find the name of the set containing row
rroot = root(rset);
if (rroot != col)
{
parent(rroot) = col;
pp(cset) = rset;
cset = rset;
root(cset) = col;
}
}
}
return 0;
}
/**
* Depth-first search from vertex n. No recursion.
* This routine was contributed by Cédric Doucet, CEDRAT Group, Meylan, France.
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_nr_etdfs (int n, IndexVector& parent, IndexVector& first_kid, IndexVector& next_kid, IndexVector& post, int postnum)
{
int current = n, first, next;
while (postnum != n)
{
// No kid for the current node
first = first_kid(current);
// no kid for the current node
if (first == -1)
{
// Numbering this node because it has no kid
post(current) = postnum++;
// looking for the next kid
next = next_kid(current);
while (next == -1)
{
// No more kids : back to the parent node
current = parent(current);
// numbering the parent node
post(current) = postnum++;
// Get the next kid
next = next_kid(current);
}
// stopping criterion
if (postnum == n+1) return;
// Updating current node
current = next;
}
else
{
current = first;
}
}
}
/**
* Post order a tree
* \param parent Input tree
* \param post postordered tree
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_TreePostorder(int n, IndexVector& parent, IndexVector& post)
{
IndexVector first_kid, next_kid; // Linked list of children
int postnum;
// Allocate storage for working arrays and results
first_kid.resize(n+1);
next_kid.setZero(n+1);
post.setZero(n+1);
// Set up structure describing children
int v, dad;
first_kid.setConstant(-1);
for (v = n-1; v >= 0; v--)
{
dad = parent(v);
next_kid(v) = first_kid(dad);
first_kid(dad) = v;
}
// Depth-first search from dummy root vertex #n
postnum = 0;
LU_nr_etdfs(n, parent, first_kid, next_kid, post, postnum);
}
#endif

View File

@ -0,0 +1,313 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSELU_MATRIX_H
#define EIGEN_SPARSELU_MATRIX_H
/** \ingroup SparseLU_Module
* \brief a class to manipulate the L supernodal factor from the SparseLU factorization
*
* This class contain the data to easily store
* and manipulate the supernodes during the factorization and solution phase of Sparse LU.
* Only the lower triangular matrix has supernodes.
*
* NOTE : This class corresponds to the SCformat structure in SuperLU
*
*/
/* TO DO
* InnerIterator as for sparsematrix
* SuperInnerIterator to iterate through all supernodes
* Function for triangular solve
*/
template <typename _Scalar, typename _Index>
class SuperNodalMatrix
{
public:
typedef _Scalar Scalar;
typedef _Index Index;
typedef Matrix<Index,Dynamic,1> IndexVector;
typedef Matrix<Scalar,Dynamic,1> ScalarVector;
public:
SuperNodalMatrix()
{
}
SuperNodalMatrix(int m, int n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind,
IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
{
setInfos(m, n, nzval, nzval_colptr, rowind, rowind_colptr, col_to_sup, sup_to_col);
}
~SuperNodalMatrix()
{
}
/**
* Set appropriate pointers for the lower triangular supernodal matrix
* These infos are available at the end of the numerical factorization
* FIXME This class will be modified such that it can be use in the course
* of the factorization.
*/
void setInfos(int m, int n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind,
IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
{
m_row = m;
m_col = n;
m_nzval = nzval.data();
m_nzval_colptr = nzval_colptr.data();
m_rowind = rowind.data();
m_rowind_colptr = rowind_colptr.data();
m_nsuper = col_to_sup(n);
m_col_to_sup = col_to_sup.data();
m_sup_to_col = sup_to_col.data();
}
/**
* Number of rows
*/
int rows()
{
return m_row;
}
/**
* Number of columns
*/
int cols()
{
return m_col;
}
/**
* Return the array of nonzero values packed by column
*
* The size is nnz
*/
Scalar* valuePtr()
{
return m_nzval;
}
const Scalar* valuePtr() const
{
return m_nzval;
}
/**
* Return the pointers to the beginning of each column in \ref valuePtr()
*/
Index* colIndexPtr()
{
return m_nzval_colptr;
}
const Index* colIndexPtr() const
{
return m_nzval_colptr;
}
/**
* Return the array of compressed row indices of all supernodes
*/
Index* rowIndex()
{
return m_rowind;
}
const Index* rowIndex() const
{
return m_rowind;
}
/**
* Return the location in \em rowvaluePtr() which starts each column
*/
Index* rowIndexPtr()
{
return m_rowind_colptr;
}
const Index* rowIndexPtr() const
{
return m_rowind_colptr;
}
/**
* Return the array of column-to-supernode mapping
*/
Index* colToSup()
{
return m_col_to_sup;
}
const Index* colToSup() const
{
return m_col_to_sup;
}
/**
* Return the array of supernode-to-column mapping
*/
Index* supToCol()
{
return m_sup_to_col;
}
const Index* supToCol() const
{
return m_sup_to_col;
}
/**
* Return the number of supernodes
*/
int nsuper() const
{
return m_nsuper;
}
class InnerIterator;
template<typename Dest>
void solveInPlace( MatrixBase<Dest>&X) const;
protected:
Index m_row; // Number of rows
Index m_col; // Number of columns
Index m_nsuper; // Number of supernodes
Scalar* m_nzval; //array of nonzero values packed by column
Index* m_nzval_colptr; //nzval_colptr[j] Stores the location in nzval[] which starts column j
Index* m_rowind; // Array of compressed row indices of rectangular supernodes
Index* m_rowind_colptr; //rowind_colptr[j] stores the location in rowind[] which starts column j
Index* m_col_to_sup; // col_to_sup[j] is the supernode number to which column j belongs
Index* m_sup_to_col; //sup_to_col[s] points to the starting column of the s-th supernode
private :
};
/**
* \brief InnerIterator class to iterate over nonzero values of the current column in the supernode
*
*/
template<typename Scalar, typename Index>
class SuperNodalMatrix<Scalar,Index>::InnerIterator
{
public:
InnerIterator(const SuperNodalMatrix& mat, Index outer)
: m_matrix(mat),
m_outer(outer),
m_idval(mat.colIndexPtr()[outer]),
m_startval(m_idval),
m_endval(mat.colIndexPtr()[outer+1]),
m_idrow(mat.rowIndexPtr()[outer]),
m_startidrow(m_idrow),
m_endidrow(mat.rowIndexPtr()[outer+1])
{}
inline InnerIterator& operator++()
{
m_idval++;
m_idrow++;
return *this;
}
inline Scalar value() const { return m_matrix.valuePtr()[m_idval]; }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_idval]); }
inline Index index() const { return m_matrix.rowIndex()[m_idrow]; }
inline Index row() const { return index(); }
inline Index col() const { return m_outer; }
inline Index supIndex() const { return m_matrix.colToSup()[m_outer]; }
inline operator bool() const
{
return ( (m_idval < m_endval) && (m_idval > m_startval) &&
(m_idrow < m_endidrow) && (m_idrow > m_startidrow) );
}
protected:
const SuperNodalMatrix& m_matrix; // Supernodal lower triangular matrix
const Index m_outer; // Current column
Index m_idval; //Index to browse the values in the current column
const Index m_startval; // Start of the column value
const Index m_endval; // End of the column value
Index m_idrow; //Index to browse the row indices
const Index m_startidrow; // Start of the row indices of the current column value
const Index m_endidrow; // End of the row indices of the current column value
};
/**
* \brief Solve with the supernode triangular matrix
*
*/
template<typename Scalar, typename Index>
template<typename Dest>
void SuperNodalMatrix<Scalar,Index>::solveInPlace( MatrixBase<Dest>&X) const
{
Index n = X.rows();
int nrhs = X.cols();
const Scalar * Lval = valuePtr(); // Nonzero values
Matrix<Scalar,Dynamic,Dynamic> work(n, nrhs); // working vector
work.setZero();
for (int k = 0; k <= nsuper(); k ++)
{
Index fsupc = supToCol()[k]; // First column of the current supernode
Index istart = rowIndexPtr()[fsupc]; // Pointer index to the subscript of the current column
Index nsupr = rowIndexPtr()[fsupc+1] - istart; // Number of rows in the current supernode
Index nsupc = supToCol()[k+1] - fsupc; // Number of columns in the current supernode
Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode
Index irow; //Current index row
if (nsupc == 1 )
{
for (int j = 0; j < nrhs; j++)
{
InnerIterator it(*this, fsupc);
++it; // Skip the diagonal element
for (; it; ++it)
{
irow = it.row();
X(irow, j) -= X(fsupc, j) * it.value();
}
}
}
else
{
// The supernode has more than one column
Index luptr = colIndexPtr()[fsupc];
// Triangular solve
Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
Map< Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
U = A.template triangularView<UnitLower>().solve(U);
// Matrix-vector product
new (&A) Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > ( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(nsupr) );
work.block(0, 0, nrow, nrhs) = A * U;
//Begin Scatter
for (int j = 0; j < nrhs; j++)
{
Index iptr = istart + nsupc;
for (int i = 0; i < nrow; i++)
{
irow = rowIndex()[iptr];
X(irow, j) -= work(i, j); // Scatter operation
work(i, j) = Scalar(0);
iptr++;
}
}
}
}
}
#endif

View File

@ -0,0 +1,204 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]memory.c files in SuperLU
* -- SuperLU routine (version 3.1) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* August 1, 2008
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef EIGEN_SPARSELU_MEMORY
#define EIGEN_SPARSELU_MEMORY
#define LU_NO_MARKER 3
#define LU_NUM_TEMPV(m,w,t,b) ((std::max)(m, (t+b)*w) )
#define IND_EMPTY (-1)
#define LU_Reduce(alpha) ((alpha + 1) / 2) // i.e (alpha-1)/2 + 1
#define LU_GluIntArray(n) (5* (n) + 5)
#define LU_TempSpace(m, w) ( (2*w + 4 + LU_NO_MARKER) * m * sizeof(Index) \
+ (w + 1) * m * sizeof(Scalar) )
/**
* Expand the existing storage to accomodate more fill-ins
* \param vec Valid pointer to the vector to allocate or expand
* \param [in,out]length At input, contain the current length of the vector that is to be increased. At output, length of the newly allocated vector
* \param [in]nbElts Current number of elements in the factors
* \param keep_prev 1: use length and do not expand the vector; 0: compute new_len and expand
* \param [in,out]num_expansions Number of times the memory has been expanded
*/
template <typename Scalar, typename Index>
template <typename VectorType>
int SparseLUBase<Scalar,Index>::expand(VectorType& vec, int& length, int nbElts, int keep_prev, int& num_expansions)
{
float alpha = 1.5; // Ratio of the memory increase
int new_len; // New size of the allocated memory
if(num_expansions == 0 || keep_prev)
new_len = length ; // First time allocate requested
else
new_len = alpha * length ;
VectorType old_vec; // Temporary vector to hold the previous values
if (nbElts > 0 )
old_vec = vec.segment(0,nbElts);
//Allocate or expand the current vector
try
{
vec.resize(new_len);
}
catch(std::bad_alloc& )
{
if ( !num_expansions )
{
// First time to allocate from LUMemInit()
throw; // Pass the exception to LUMemInit() which has a try... catch block
}
if (keep_prev)
{
// In this case, the memory length should not not be reduced
return new_len;
}
else
{
// Reduce the size and increase again
int tries = 0; // Number of attempts
do
{
alpha = LU_Reduce(alpha);
new_len = alpha * length ;
try
{
vec.resize(new_len);
}
catch(std::bad_alloc& )
{
tries += 1;
if ( tries > 10) return new_len;
}
} while (!vec.size());
}
}
//Copy the previous values to the newly allocated space
if (nbElts > 0)
vec.segment(0, nbElts) = old_vec;
length = new_len;
if(num_expansions) ++num_expansions;
return 0;
}
/**
* \brief Allocate various working space for the numerical factorization phase.
* \param m number of rows of the input matrix
* \param n number of columns
* \param annz number of initial nonzeros in the matrix
* \param lwork if lwork=-1, this routine returns an estimated size of the required memory
* \param glu persistent data to facilitate multiple factors : will be deleted later ??
* \return an estimated size of the required memory if lwork = -1; otherwise, return the size of actually allocated memory when allocation failed, and 0 on success
* NOTE Unlike SuperLU, this routine does not support successive factorization with the same pattern and the same row permutation
*/
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LUMemInit(int m, int n, int annz, int lwork, int fillratio, int panel_size, GlobalLU_t& glu)
{
int& num_expansions = glu.num_expansions; //No memory expansions so far
num_expansions = 0;
glu.nzumax = glu.nzlumax = (std::max)(fillratio * annz, m*n); // estimated number of nonzeros in U
glu.nzlmax = (std::max)(1., fillratio/4.) * annz; // estimated nnz in L factor
// Return the estimated size to the user if necessary
if (lwork == IND_EMPTY)
{
int estimated_size;
estimated_size = LU_GluIntArray(n) * sizeof(Index) + LU_TempSpace(m, panel_size)
+ (glu.nzlmax + glu.nzumax) * sizeof(Index) + (glu.nzlumax+glu.nzumax) * sizeof(Scalar) + n;
return estimated_size;
}
// Setup the required space
// First allocate Integer pointers for L\U factors
glu.xsup.resize(n+1);
glu.supno.resize(n+1);
glu.xlsub.resize(n+1);
glu.xlusup.resize(n+1);
glu.xusub.resize(n+1);
// Reserve memory for L/U factors
do
{
try
{
expand<ScalarVector>(glu.lusup, glu.nzlumax, 0, 0, num_expansions);
expand<ScalarVector>(glu.ucol,glu.nzumax, 0, 0, num_expansions);
expand<IndexVector>(glu.lsub,glu.nzlmax, 0, 0, num_expansions);
expand<IndexVector>(glu.usub,glu.nzumax, 0, 1, num_expansions);
}
catch(std::bad_alloc& )
{
//Reduce the estimated size and retry
glu.nzlumax /= 2;
glu.nzumax /= 2;
glu.nzlmax /= 2;
if (glu.nzlumax < annz ) return glu.nzlumax;
}
} while (!glu.lusup.size() || !glu.ucol.size() || !glu.lsub.size() || !glu.usub.size());
++num_expansions;
return 0;
} // end LuMemInit
/**
* \brief Expand the existing storage
* \param vec vector to expand
* \param [in,out]maxlen On input, previous size of vec (Number of elements to copy ). on output, new size
* \param nbElts current number of elements in the vector.
* \param glu Global data structure
* \return 0 on success, > 0 size of the memory allocated so far
*/
template <typename Scalar, typename Index>
template <typename VectorType>
int SparseLUBase<Scalar,Index>::LUMemXpand(VectorType& vec, int& maxlen, int nbElts, LU_MemType memtype, int& num_expansions)
{
int failed_size;
if (memtype == USUB)
failed_size = expand<VectorType>(vec, maxlen, nbElts, 1, num_expansions);
else
failed_size = expand<VectorType>(vec, maxlen, nbElts, 0, num_expansions);
if (failed_size)
return failed_size;
return 0 ;
}
#endif

View File

@ -0,0 +1,103 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file comes from a partly modified version of files slu_[s,d,c,z]defs.h
* -- SuperLU routine (version 4.1) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November, 2010
*
* Global data structures used in LU factorization -
*
* nsuper: #supernodes = nsuper + 1, numbered [0, nsuper].
* (xsup,supno): supno[i] is the supernode no to which i belongs;
* xsup(s) points to the beginning of the s-th supernode.
* e.g. supno 0 1 2 2 3 3 3 4 4 4 4 4 (n=12)
* xsup 0 1 2 4 7 12
* Note: dfs will be performed on supernode rep. relative to the new
* row pivoting ordering
*
* (xlsub,lsub): lsub[*] contains the compressed subscript of
* rectangular supernodes; xlsub[j] points to the starting
* location of the j-th column in lsub[*]. Note that xlsub
* is indexed by column.
* Storage: original row subscripts
*
* During the course of sparse LU factorization, we also use
* (xlsub,lsub) for the purpose of symmetric pruning. For each
* supernode {s,s+1,...,t=s+r} with first column s and last
* column t, the subscript set
* lsub[j], j=xlsub[s], .., xlsub[s+1]-1
* is the structure of column s (i.e. structure of this supernode).
* It is used for the storage of numerical values.
* Furthermore,
* lsub[j], j=xlsub[t], .., xlsub[t+1]-1
* is the structure of the last column t of this supernode.
* It is for the purpose of symmetric pruning. Therefore, the
* structural subscripts can be rearranged without making physical
* interchanges among the numerical values.
*
* However, if the supernode has only one column, then we
* only keep one set of subscripts. For any subscript interchange
* performed, similar interchange must be done on the numerical
* values.
*
* The last column structures (for pruning) will be removed
* after the numercial LU factorization phase.
*
* (xlusup,lusup): lusup[*] contains the numerical values of the
* rectangular supernodes; xlusup[j] points to the starting
* location of the j-th column in storage vector lusup[*]
* Note: xlusup is indexed by column.
* Each rectangular supernode is stored by column-major
* scheme, consistent with Fortran 2-dim array storage.
*
* (xusub,ucol,usub): ucol[*] stores the numerical values of
* U-columns outside the rectangular supernodes. The row
* subscript of nonzero ucol[k] is stored in usub[k].
* xusub[i] points to the starting location of column i in ucol.
* Storage: new row subscripts; that is subscripts of PA.
*/
#ifndef EIGEN_LU_STRUCTS
#define EIGEN_LU_STRUCTS
typedef enum {LUSUP, UCOL, LSUB, USUB, LLVL, ULVL} LU_MemType;
template <typename IndexVector, typename ScalarVector>
struct LU_GlobalLU_t {
typedef typename IndexVector::Scalar Index;
IndexVector xsup; //First supernode column ... xsup(s) points to the beginning of the s-th supernode
IndexVector supno; // Supernode number corresponding to this column (column to supernode mapping)
ScalarVector lusup; // nonzero values of L ordered by columns
IndexVector lsub; // Compressed row indices of L rectangular supernodes.
IndexVector xlusup; // pointers to the beginning of each column in lusup
IndexVector xlsub; // pointers to the beginning of each column in lsub
Index nzlmax; // Current max size of lsub
Index nzlumax; // Current max size of lusup
ScalarVector ucol; // nonzero values of U ordered by columns
IndexVector usub; // row indices of U columns in ucol
IndexVector xusub; // Pointers to the beginning of each column of U in ucol
Index nzumax; // Current max size of ucol
Index n; // Number of columns in the matrix
int num_expansions;
};
// Values to set for performance
struct LU_perfvalues {
int panel_size; // a panel consists of at most <panel_size> consecutive columns
int relax; // To control degree of relaxing supernodes. If the number of nodes (columns)
// in a subtree of the elimination tree is less than relax, this subtree is considered
// as one supernode regardless of the row structures of those columns
int maxsuper; // The maximum size for a supernode in complete LU
int rowblk; // The minimum row dimension for 2-D blocking to be used;
int colblk; // The minimum column dimension for 2-D blocking to be used;
int fillfactor; // The estimated fills factors for L and U, compared with A
};
#endif

View File

@ -0,0 +1,75 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSELU_UTILS_H
#define EIGEN_SPARSELU_UTILS_H
/**
* \brief Count Nonzero elements in the factors
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_countnz(const int n, int& nnzL, int& nnzU, GlobalLU_t& glu)
{
nnzL = 0;
nnzU = (glu.xusub)(n);
int nsuper = (glu.supno)(n);
int jlen;
int i, j, fsupc;
if (n <= 0 ) return;
// For each supernode
for (i = 0; i <= nsuper; i++)
{
fsupc = glu.xsup(i);
jlen = glu.xlsub(fsupc+1) - glu.xlsub(fsupc);
for (j = fsupc; j < glu.xsup(i+1); j++)
{
nnzL += jlen;
nnzU += j - fsupc + 1;
jlen--;
}
}
}
/**
* \brief Fix up the data storage lsub for L-subscripts.
*
* It removes the subscripts sets for structural pruning,
* and applies permutation to the remaining subscripts
*
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_fixupL(const int n, const IndexVector& perm_r, GlobalLU_t& glu)
{
int fsupc, i, j, k, jstart;
int nextl = 0;
int nsuper = (glu.supno)(n);
// For each supernode
for (i = 0; i <= nsuper; i++)
{
fsupc = glu.xsup(i);
jstart = glu.xlsub(fsupc);
glu.xlsub(fsupc) = nextl;
for (j = jstart; j < glu.xlsub(fsupc + 1); j++)
{
glu.lsub(nextl) = perm_r(glu.lsub(j)); // Now indexed into P*A
nextl++;
}
for (k = fsupc+1; k < glu.xsup(i+1); k++)
glu.xlsub(k) = nextl; // other columns in supernode i
}
glu.xlsub(n) = nextl;
}
#endif

View File

@ -0,0 +1,162 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of xcolumn_bmod.c file in SuperLU
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_COLUMN_BMOD_H
#define SPARSELU_COLUMN_BMOD_H
/**
* \brief Performs numeric block updates (sup-col) in topological order
*
* \param jcol current column to update
* \param nseg Number of segments in the U part
* \param dense Store the full representation of the column
* \param tempv working array
* \param segrep segment representative ...
* \param repfnz ??? First nonzero column in each row ??? ...
* \param fpanelc First column in the current panel
* \param glu Global LU data.
* \return 0 - successful return
* > 0 - number of bytes allocated when run out of space
*
*/
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_column_bmod(const int jcol, const int nseg, BlockScalarVector& dense, ScalarVector& tempv, BlockIndexVector& segrep, BlockIndexVector& repfnz, int fpanelc, GlobalLU_t& glu)
{
int jsupno, k, ksub, krep, ksupno;
int lptr, nrow, isub, irow, nextlu, new_next, ufirst;
int fsupc, nsupc, nsupr, luptr, kfnz, no_zeros;
/* krep = representative of current k-th supernode
* fsupc = first supernodal column
* nsupc = number of columns in a supernode
* nsupr = number of rows in a supernode
* luptr = location of supernodal LU-block in storage
* kfnz = first nonz in the k-th supernodal segment
* no_zeros = no lf leading zeros in a supernodal U-segment
*/
jsupno = glu.supno(jcol);
// For each nonzero supernode segment of U[*,j] in topological order
k = nseg - 1;
int d_fsupc; // distance between the first column of the current panel and the
// first column of the current snode
int fst_col; // First column within small LU update
int segsize;
for (ksub = 0; ksub < nseg; ksub++)
{
krep = segrep(k); k--;
ksupno = glu.supno(krep);
if (jsupno != ksupno )
{
// outside the rectangular supernode
fsupc = glu.xsup(ksupno);
fst_col = (std::max)(fsupc, fpanelc);
// Distance from the current supernode to the current panel;
// d_fsupc = 0 if fsupc > fpanelc
d_fsupc = fst_col - fsupc;
luptr = glu.xlusup(fst_col) + d_fsupc;
lptr = glu.xlsub(fsupc) + d_fsupc;
kfnz = repfnz(krep);
kfnz = (std::max)(kfnz, fpanelc);
segsize = krep - kfnz + 1;
nsupc = krep - fst_col + 1;
nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc);
nrow = nsupr - d_fsupc - nsupc;
// Perform a triangular solver and block update,
// then scatter the result of sup-col update to dense
no_zeros = kfnz - fst_col;
if(segsize==1)
LU_kernel_bmod<1>::run(segsize, dense, tempv, glu.lusup, luptr, nsupr, nrow, glu.lsub, lptr, no_zeros);
else
LU_kernel_bmod<Dynamic>::run(segsize, dense, tempv, glu.lusup, luptr, nsupr, nrow, glu.lsub, lptr, no_zeros);
} // end if jsupno
} // end for each segment
// Process the supernodal portion of L\U[*,j]
nextlu = glu.xlusup(jcol);
fsupc = glu.xsup(jsupno);
// copy the SPA dense into L\U[*,j]
int mem;
new_next = nextlu + glu.xlsub(fsupc + 1) - glu.xlsub(fsupc);
while (new_next > glu.nzlumax )
{
mem = LUMemXpand<ScalarVector>(glu.lusup, glu.nzlumax, nextlu, LUSUP, glu.num_expansions);
if (mem) return mem;
}
for (isub = glu.xlsub(fsupc); isub < glu.xlsub(fsupc+1); isub++)
{
irow = glu.lsub(isub);
glu.lusup(nextlu) = dense(irow);
dense(irow) = Scalar(0.0);
++nextlu;
}
glu.xlusup(jcol + 1) = nextlu; // close L\U(*,jcol);
/* For more updates within the panel (also within the current supernode),
* should start from the first column of the panel, or the first column
* of the supernode, whichever is bigger. There are two cases:
* 1) fsupc < fpanelc, then fst_col <-- fpanelc
* 2) fsupc >= fpanelc, then fst_col <-- fsupc
*/
fst_col = (std::max)(fsupc, fpanelc);
if (fst_col < jcol)
{
// Distance between the current supernode and the current panel
// d_fsupc = 0 if fsupc >= fpanelc
d_fsupc = fst_col - fsupc;
lptr = glu.xlsub(fsupc) + d_fsupc;
luptr = glu.xlusup(fst_col) + d_fsupc;
nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); // leading dimension
nsupc = jcol - fst_col; // excluding jcol
nrow = nsupr - d_fsupc - nsupc;
// points to the beginning of jcol in snode L\U(jsupno)
ufirst = glu.xlusup(jcol) + d_fsupc;
Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(glu.lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
VectorBlock<ScalarVector> u(glu.lusup, ufirst, nsupc);
u = A.template triangularView<UnitLower>().solve(u);
new (&A) Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > ( &(glu.lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(nsupr) );
VectorBlock<ScalarVector> l(glu.lusup, ufirst+nsupc, nrow);
l.noalias() -= A * u;
} // End if fst_col
return 0;
}
#endif

View File

@ -0,0 +1,164 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]column_dfs.c file in SuperLU
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_COLUMN_DFS_H
#define SPARSELU_COLUMN_DFS_H
/**
* \brief Performs a symbolic factorization on column jcol and decide the supernode boundary
*
* A supernode representative is the last column of a supernode.
* The nonzeros in U[*,j] are segments that end at supernodes representatives.
* The routine returns a list of the supernodal representatives
* in topological order of the dfs that generates them.
* The location of the first nonzero in each supernodal segment
* (supernodal entry location) is also returned.
*
* \param m number of rows in the matrix
* \param jcol Current column
* \param perm_r Row permutation
* \param maxsuper Maximum number of column allowed in a supernode
* \param [in,out] nseg Number of segments in current U[*,j] - new segments appended
* \param lsub_col defines the rhs vector to start the dfs
* \param [in,out] segrep Segment representatives - new segments appended
* \param repfnz First nonzero location in each row
* \param xprune
* \param marker marker[i] == jj, if i was visited during dfs of current column jj;
* \param parent
* \param xplore working array
* \param glu global LU data
* \return 0 success
* > 0 number of bytes allocated when run out of space
*
*/
template<typename IndexVector, typename ScalarVector>
struct LU_column_dfs_traits
{
typedef typename IndexVector::Scalar Index;
typedef typename ScalarVector::Scalar Scalar;
LU_column_dfs_traits(Index jcol, Index& jsuper, LU_GlobalLU_t<IndexVector, ScalarVector>& glu)
: m_jcol(jcol), m_jsuper_ref(jsuper), m_glu(glu)
{}
bool update_segrep(Index /*krep*/, Index /*jj*/)
{
return true;
}
void mem_expand(IndexVector& lsub, int& nextl, int chmark)
{
if (nextl >= m_glu.nzlmax)
SparseLUBase<Scalar,Index>::LUMemXpand(lsub, m_glu.nzlmax, nextl, LSUB, m_glu.num_expansions);
if (chmark != (m_jcol-1)) m_jsuper_ref = IND_EMPTY;
}
enum { ExpandMem = true };
int m_jcol;
int& m_jsuper_ref;
LU_GlobalLU_t<IndexVector, ScalarVector>& m_glu;
};
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_column_dfs(const int m, const int jcol, IndexVector& perm_r, int maxsuper, int& nseg, BlockIndexVector& lsub_col, IndexVector& segrep, BlockIndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu)
{
int jsuper = glu.supno(jcol);
int nextl = glu.xlsub(jcol);
VectorBlock<IndexVector> marker2(marker, 2*m, m);
LU_column_dfs_traits<IndexVector, ScalarVector> traits(jcol, jsuper, glu);
// For each nonzero in A(*,jcol) do dfs
for (int k = 0; lsub_col[k] != IND_EMPTY; k++)
{
int krow = lsub_col(k);
lsub_col(k) = IND_EMPTY;
int kmark = marker2(krow);
// krow was visited before, go to the next nonz;
if (kmark == jcol) continue;
LU_dfs_kernel(jcol, perm_r, nseg, glu.lsub, segrep, repfnz, xprune, marker2, parent,
xplore, glu, nextl, krow, traits);
} // for each nonzero ...
int fsupc, jptr, jm1ptr, ito, ifrom, istop;
int nsuper = glu.supno(jcol);
int jcolp1 = jcol + 1;
int jcolm1 = jcol - 1;
// check to see if j belongs in the same supernode as j-1
if ( jcol == 0 )
{ // Do nothing for column 0
nsuper = glu.supno(0) = 0 ;
}
else
{
fsupc = glu.xsup(nsuper);
jptr = glu.xlsub(jcol); // Not yet compressed
jm1ptr = glu.xlsub(jcolm1);
// Use supernodes of type T2 : see SuperLU paper
if ( (nextl-jptr != jptr-jm1ptr-1) ) jsuper = IND_EMPTY;
// Make sure the number of columns in a supernode doesn't
// exceed threshold
if ( (jcol - fsupc) >= maxsuper) jsuper = IND_EMPTY;
/* If jcol starts a new supernode, reclaim storage space in
* glu.lsub from previous supernode. Note we only store
* the subscript set of the first and last columns of
* a supernode. (first for num values, last for pruning)
*/
if (jsuper == IND_EMPTY)
{ // starts a new supernode
if ( (fsupc < jcolm1-1) )
{ // >= 3 columns in nsuper
ito = glu.xlsub(fsupc+1);
glu.xlsub(jcolm1) = ito;
istop = ito + jptr - jm1ptr;
xprune(jcolm1) = istop; // intialize xprune(jcol-1)
glu.xlsub(jcol) = istop;
for (ifrom = jm1ptr; ifrom < nextl; ++ifrom, ++ito)
glu.lsub(ito) = glu.lsub(ifrom);
nextl = ito; // = istop + length(jcol)
}
nsuper++;
glu.supno(jcol) = nsuper;
} // if a new supernode
} // end else: jcol > 0
// Tidy up the pointers before exit
glu.xsup(nsuper+1) = jcolp1;
glu.supno(jcolp1) = nsuper;
xprune(jcol) = nextl; // Intialize upper bound for pruning
glu.xlsub(jcolp1) = nextl;
return 0;
}
#endif

View File

@ -0,0 +1,100 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]copy_to_ucol.c file in SuperLU
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_COPY_TO_UCOL_H
#define SPARSELU_COPY_TO_UCOL_H
/**
* \brief Performs numeric block updates (sup-col) in topological order
*
* \param jcol current column to update
* \param nseg Number of segments in the U part
* \param segrep segment representative ...
* \param repfnz First nonzero column in each row ...
* \param perm_r Row permutation
* \param dense Store the full representation of the column
* \param glu Global LU data.
* \return 0 - successful return
* > 0 - number of bytes allocated when run out of space
*
*/
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_copy_to_ucol(const int jcol, const int nseg, IndexVector& segrep, BlockIndexVector& repfnz ,IndexVector& perm_r, BlockScalarVector& dense, GlobalLU_t& glu)
{
Index ksub, krep, ksupno;
Index jsupno = glu.supno(jcol);
// For each nonzero supernode segment of U[*,j] in topological order
int k = nseg - 1, i;
Index nextu = glu.xusub(jcol);
Index kfnz, isub, segsize;
Index new_next,irow;
Index fsupc, mem;
for (ksub = 0; ksub < nseg; ksub++)
{
krep = segrep(k); k--;
ksupno = glu.supno(krep);
if (jsupno != ksupno ) // should go into ucol();
{
kfnz = repfnz(krep);
if (kfnz != IND_EMPTY)
{ // Nonzero U-segment
fsupc = glu.xsup(ksupno);
isub = glu.xlsub(fsupc) + kfnz - fsupc;
segsize = krep - kfnz + 1;
new_next = nextu + segsize;
while (new_next > glu.nzumax)
{
mem = LUMemXpand<ScalarVector>(glu.ucol, glu.nzumax, nextu, UCOL, glu.num_expansions);
if (mem) return mem;
mem = LUMemXpand<IndexVector>(glu.usub, glu.nzumax, nextu, USUB, glu.num_expansions);
if (mem) return mem;
}
for (i = 0; i < segsize; i++)
{
irow = glu.lsub(isub);
glu.usub(nextu) = perm_r(irow); // Unlike the L part, the U part is stored in its final order
glu.ucol(nextu) = dense(irow);
dense(irow) = Scalar(0.0);
nextu++;
isub++;
}
} // end nonzero U-segment
} // end if jsupno
} // end for each segment
glu.xusub(jcol + 1) = nextu; // close U(*,jcol)
return 0;
}
#endif

View File

@ -0,0 +1,119 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/* This file is a modified version of heap_relax_snode.c file in SuperLU
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_HEAP_RELAX_SNODE_H
#define SPARSELU_HEAP_RELAX_SNODE_H
#include "SparseLU_Coletree.h"
/**
* \brief Identify the initial relaxed supernodes
*
* This routine applied to a symmetric elimination tree.
* It assumes that the matrix has been reordered according to the postorder of the etree
* \param et elimination tree
* \param relax_columns Maximum number of columns allowed in a relaxed snode
* \param descendants Number of descendants of each node in the etree
* \param relax_end last column in a supernode
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_heap_relax_snode (const int n, IndexVector& et, const int relax_columns, IndexVector& descendants, IndexVector& relax_end)
{
// The etree may not be postordered, but its heap ordered
IndexVector post;
LU_TreePostorder(n, et, post); // Post order etree
IndexVector inv_post(n+1);
int i;
for (i = 0; i < n+1; ++i) inv_post(post(i)) = i; // inv_post = post.inverse()???
// Renumber etree in postorder
IndexVector iwork(n);
IndexVector et_save(n+1);
for (i = 0; i < n; ++i)
{
iwork(post(i)) = post(et(i));
}
et_save = et; // Save the original etree
et = iwork;
// compute the number of descendants of each node in the etree
relax_end.setConstant(IND_EMPTY);
int j, parent;
descendants.setZero();
for (j = 0; j < n; j++)
{
parent = et(j);
if (parent != n) // not the dummy root
descendants(parent) += descendants(j) + 1;
}
// Identify the relaxed supernodes by postorder traversal of the etree
int snode_start; // beginning of a snode
int k;
int nsuper_et_post = 0; // Number of relaxed snodes in postordered etree
int nsuper_et = 0; // Number of relaxed snodes in the original etree
int l;
for (j = 0; j < n; )
{
parent = et(j);
snode_start = j;
while ( parent != n && descendants(parent) < relax_columns )
{
j = parent;
parent = et(j);
}
// Found a supernode in postordered etree, j is the last column
++nsuper_et_post;
k = n;
for (i = snode_start; i <= j; ++i)
k = (std::min)(k, inv_post(i));
l = inv_post(j);
if ( (l - k) == (j - snode_start) ) // Same number of columns in the snode
{
// This is also a supernode in the original etree
relax_end(k) = l; // Record last column
++nsuper_et;
}
else
{
for (i = snode_start; i <= j; ++i)
{
l = inv_post(i);
if (descendants(i) == 0)
{
relax_end(l) = l;
++nsuper_et;
}
}
}
j++;
// Search for a new leaf
while (descendants(j) != 0 && j < n) j++;
} // End postorder traversal of the etree
// Recover the original etree
et = et_save;
}
#endif

View File

@ -0,0 +1,109 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef SPARSELU_KERNEL_BMOD_H
#define SPARSELU_KERNEL_BMOD_H
/**
* \brief Performs numeric block updates from a given supernode to a single column
*
* \param segsize Size of the segment (and blocks ) to use for updates
* \param [in,out]dense Packed values of the original matrix
* \param tempv temporary vector to use for updates
* \param lusup array containing the supernodes
* \param nsupr Number of rows in the supernode
* \param nrow Number of rows in the rectangular part of the supernode
* \param lsub compressed row subscripts of supernodes
* \param lptr pointer to the first column of the current supernode in lsub
* \param no_zeros Number of nonzeros elements before the diagonal part of the supernode
* \return 0 on success
*/
template <int SegSizeAtCompileTime> struct LU_kernel_bmod
{
template <typename BlockScalarVector, typename ScalarVector, typename IndexVector>
EIGEN_DONT_INLINE static void run(const int segsize, BlockScalarVector& dense, ScalarVector& tempv, ScalarVector& lusup, int& luptr, const int nsupr, const int nrow, IndexVector& lsub, const int lptr, const int no_zeros)
{
typedef typename ScalarVector::Scalar Scalar;
// First, copy U[*,j] segment from dense(*) to tempv(*)
// The result of triangular solve is in tempv[*];
// The result of matric-vector update is in dense[*]
int isub = lptr + no_zeros;
int i, irow;
for (i = 0; i < ((SegSizeAtCompileTime==Dynamic)?segsize:SegSizeAtCompileTime); i++)
{
irow = lsub(isub);
tempv(i) = dense(irow);
++isub;
}
// Dense triangular solve -- start effective triangle
luptr += nsupr * no_zeros + no_zeros;
// Form Eigen matrix and vector
Map<Matrix<Scalar,SegSizeAtCompileTime,SegSizeAtCompileTime>, 0, OuterStride<> > A( &(lusup.data()[luptr]), segsize, segsize, OuterStride<>(nsupr) );
Map<Matrix<Scalar,SegSizeAtCompileTime,1> > u(tempv.data(), segsize);
u = A.template triangularView<UnitLower>().solve(u);
// Dense matrix-vector product y <-- B*x
luptr += segsize;
Map<Matrix<Scalar,Dynamic,SegSizeAtCompileTime>, 0, OuterStride<> > B( &(lusup.data()[luptr]), nrow, segsize, OuterStride<>(nsupr) );
Map<Matrix<Scalar,Dynamic,1> > l(tempv.data()+segsize, nrow);
if(SegSizeAtCompileTime==2)
l = u(0) * B.col(0) + u(1) * B.col(1);
else if(SegSizeAtCompileTime==3)
l = u(0) * B.col(0) + u(1) * B.col(1) + u(2) * B.col(2);
else
l.noalias() = B * u;
// Scatter tempv[] into SPA dense[] as a temporary storage
isub = lptr + no_zeros;
for (i = 0; i < ((SegSizeAtCompileTime==Dynamic)?segsize:SegSizeAtCompileTime); i++)
{
irow = lsub(isub++);
dense(irow) = tempv(i);
}
// Scatter l into SPA dense[]
for (i = 0; i < nrow; i++)
{
irow = lsub(isub++);
dense(irow) -= l(i);
}
}
};
template <> struct LU_kernel_bmod<1>
{
template <typename BlockScalarVector, typename ScalarVector, typename IndexVector>
EIGEN_DONT_INLINE static void run(const int /*segsize*/, BlockScalarVector& dense, ScalarVector& /*tempv*/, ScalarVector& lusup, int& luptr, const int nsupr, const int nrow, IndexVector& lsub, const int lptr, const int no_zeros)
{
typedef typename ScalarVector::Scalar Scalar;
Scalar f = dense(lsub(lptr + no_zeros));
luptr += nsupr * no_zeros + no_zeros + 1;
const Scalar* a(lusup.data() + luptr);
const typename IndexVector::Scalar* irow(lsub.data()+lptr + no_zeros + 1);
int i = 0;
for (; i+1 < nrow; i+=2)
{
int i0 = *(irow++);
int i1 = *(irow++);
Scalar a0 = *(a++);
Scalar a1 = *(a++);
Scalar d0 = dense.coeff(i0);
Scalar d1 = dense.coeff(i1);
d0 -= f*a0;
d1 -= f*a1;
dense.coeffRef(i0) = d0;
dense.coeffRef(i1) = d1;
}
if(i<nrow)
dense.coeffRef(*(irow++)) -= f * *(a++);
}
};
#endif

View File

@ -0,0 +1,204 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]panel_bmod.c file in SuperLU
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_PANEL_BMOD_H
#define SPARSELU_PANEL_BMOD_H
/**
* \brief Performs numeric block updates (sup-panel) in topological order.
*
* Before entering this routine, the original nonzeros in the panel
* were already copied i nto the spa[m,w]
*
* \param m number of rows in the matrix
* \param w Panel size
* \param jcol Starting column of the panel
* \param nseg Number of segments in the U part
* \param dense Store the full representation of the panel
* \param tempv working array
* \param segrep segment representative... first row in the segment
* \param repfnz First nonzero rows
* \param glu Global LU data.
*
*
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_panel_bmod(const int m, const int w, const int jcol, const int nseg, ScalarVector& dense, ScalarVector& tempv, IndexVector& segrep, IndexVector& repfnz, LU_perfvalues& perfv, GlobalLU_t& glu)
{
int ksub,jj,nextl_col;
int fsupc, nsupc, nsupr, nrow;
int krep, kfnz;
int lptr; // points to the row subscripts of a supernode
int luptr; // ...
int segsize,no_zeros ;
// For each nonz supernode segment of U[*,j] in topological order
int k = nseg - 1;
for (ksub = 0; ksub < nseg; ksub++)
{ // For each updating supernode
/* krep = representative of current k-th supernode
* fsupc = first supernodal column
* nsupc = number of columns in a supernode
* nsupr = number of rows in a supernode
*/
krep = segrep(k); k--;
fsupc = glu.xsup(glu.supno(krep));
nsupc = krep - fsupc + 1;
nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc);
nrow = nsupr - nsupc;
lptr = glu.xlsub(fsupc);
// loop over the panel columns to detect the actual number of columns and rows
int u_rows = 0;
int u_cols = 0;
for (jj = jcol; jj < jcol + w; jj++)
{
nextl_col = (jj-jcol) * m;
VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row
kfnz = repfnz_col(krep);
if ( kfnz == IND_EMPTY )
continue; // skip any zero segment
segsize = krep - kfnz + 1;
u_cols++;
u_rows = (std::max)(segsize,u_rows);
}
// if the blocks are large enough, use level 3
// TODO find better heuristics!
if( nsupc >= perfv.colblk && nrow > perfv.rowblk && u_cols>perfv.relax)
{
Map<Matrix<Scalar,Dynamic,Dynamic> > U(tempv.data(), u_rows, u_cols);
// gather U
int u_col = 0;
for (jj = jcol; jj < jcol + w; jj++)
{
nextl_col = (jj-jcol) * m;
VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row
VectorBlock<ScalarVector> dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here
kfnz = repfnz_col(krep);
if ( kfnz == IND_EMPTY )
continue; // skip any zero segment
segsize = krep - kfnz + 1;
luptr = glu.xlusup(fsupc);
no_zeros = kfnz - fsupc;
int isub = lptr + no_zeros;
int off = u_rows-segsize;
for (int i = 0; i < off; i++) U(i,u_col) = 0;
for (int i = 0; i < segsize; i++)
{
int irow = glu.lsub(isub);
U(i+off,u_col) = dense_col(irow);
++isub;
}
u_col++;
}
// solve U = A^-1 U
luptr = glu.xlusup(fsupc);
no_zeros = (krep - u_rows + 1) - fsupc;
luptr += nsupr * no_zeros + no_zeros;
Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A(glu.lusup.data()+luptr, u_rows, u_rows, OuterStride<>(nsupr) );
U = A.template triangularView<UnitLower>().solve(U);
// update
luptr += u_rows;
Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > B(glu.lusup.data()+luptr, nrow, u_rows, OuterStride<>(nsupr) );
assert(tempv.size()>w*u_rows + nrow*w);
Map<Matrix<Scalar,Dynamic,Dynamic> > L(tempv.data()+w*u_rows, nrow, u_cols);
L.noalias() = B * U;
// scatter U and L
u_col = 0;
for (jj = jcol; jj < jcol + w; jj++)
{
nextl_col = (jj-jcol) * m;
VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row
VectorBlock<ScalarVector> dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here
kfnz = repfnz_col(krep);
if ( kfnz == IND_EMPTY )
continue; // skip any zero segment
segsize = krep - kfnz + 1;
no_zeros = kfnz - fsupc;
int isub = lptr + no_zeros;
int off = u_rows-segsize;
for (int i = 0; i < segsize; i++)
{
int irow = glu.lsub(isub++);
dense_col(irow) = U.coeff(i+off,u_col);
U.coeffRef(i+off,u_col) = 0;
}
// Scatter l into SPA dense[]
for (int i = 0; i < nrow; i++)
{
int irow = glu.lsub(isub++);
dense_col(irow) -= L.coeff(i,u_col);
L.coeffRef(i,u_col) = 0;
}
u_col++;
}
}
else // level 2 only
{
// Sequence through each column in the panel
for (jj = jcol; jj < jcol + w; jj++)
{
nextl_col = (jj-jcol) * m;
VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row
VectorBlock<ScalarVector> dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here
kfnz = repfnz_col(krep);
if ( kfnz == IND_EMPTY )
continue; // skip any zero segment
segsize = krep - kfnz + 1;
luptr = glu.xlusup(fsupc);
// Perform a trianglar solve and block update,
// then scatter the result of sup-col update to dense[]
no_zeros = kfnz - fsupc;
if(segsize==1) LU_kernel_bmod<1>::run(segsize, dense_col, tempv, glu.lusup, luptr, nsupr, nrow, glu.lsub, lptr, no_zeros);
else if(segsize==2) LU_kernel_bmod<2>::run(segsize, dense_col, tempv, glu.lusup, luptr, nsupr, nrow, glu.lsub, lptr, no_zeros);
else if(segsize==3) LU_kernel_bmod<3>::run(segsize, dense_col, tempv, glu.lusup, luptr, nsupr, nrow, glu.lsub, lptr, no_zeros);
else LU_kernel_bmod<Dynamic>::run(segsize, dense_col, tempv, glu.lusup, luptr, nsupr, nrow, glu.lsub, lptr, no_zeros);
} // End for each column in the panel
}
} // End for each updating supernode
}
#endif

View File

@ -0,0 +1,247 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]panel_dfs.c file in SuperLU
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_PANEL_DFS_H
#define SPARSELU_PANEL_DFS_H
template <typename Scalar, typename Index>
template <typename Traits>
void SparseLUBase<Scalar,Index>::LU_dfs_kernel(const int jj, IndexVector& perm_r,
int& nseg, IndexVector& panel_lsub, IndexVector& segrep,
Ref<IndexVector> repfnz_col, IndexVector& xprune, Ref<IndexVector> marker, IndexVector& parent,
IndexVector& xplore, GlobalLU_t& glu,
int& nextl_col, int krow, Traits& traits
)
{
int kmark = marker(krow);
// For each unmarked krow of jj
marker(krow) = jj;
int kperm = perm_r(krow);
if (kperm == IND_EMPTY ) {
// krow is in L : place it in structure of L(*, jj)
panel_lsub(nextl_col++) = krow; // krow is indexed into A
traits.mem_expand(panel_lsub, nextl_col, kmark);
}
else
{
// krow is in U : if its supernode-representative krep
// has been explored, update repfnz(*)
// krep = supernode representative of the current row
int krep = glu.xsup(glu.supno(kperm)+1) - 1;
// First nonzero element in the current column:
int myfnz = repfnz_col(krep);
if (myfnz != IND_EMPTY )
{
// Representative visited before
if (myfnz > kperm ) repfnz_col(krep) = kperm;
}
else
{
// Otherwise, perform dfs starting at krep
int oldrep = IND_EMPTY;
parent(krep) = oldrep;
repfnz_col(krep) = kperm;
int xdfs = glu.xlsub(krep);
int maxdfs = xprune(krep);
int kpar;
do
{
// For each unmarked kchild of krep
while (xdfs < maxdfs)
{
int kchild = glu.lsub(xdfs);
xdfs++;
int chmark = marker(kchild);
if (chmark != jj )
{
marker(kchild) = jj;
int chperm = perm_r(kchild);
if (chperm == IND_EMPTY)
{
// case kchild is in L: place it in L(*, j)
panel_lsub(nextl_col++) = kchild;
traits.mem_expand(panel_lsub, nextl_col, chmark);
}
else
{
// case kchild is in U :
// chrep = its supernode-rep. If its rep has been explored,
// update its repfnz(*)
int chrep = glu.xsup(glu.supno(chperm)+1) - 1;
myfnz = repfnz_col(chrep);
if (myfnz != IND_EMPTY)
{ // Visited before
if (myfnz > chperm)
repfnz_col(chrep) = chperm;
}
else
{ // Cont. dfs at snode-rep of kchild
xplore(krep) = xdfs;
oldrep = krep;
krep = chrep; // Go deeper down G(L)
parent(krep) = oldrep;
repfnz_col(krep) = chperm;
xdfs = glu.xlsub(krep);
maxdfs = xprune(krep);
} // end if myfnz != -1
} // end if chperm == -1
} // end if chmark !=jj
} // end while xdfs < maxdfs
// krow has no more unexplored nbrs :
// Place snode-rep krep in postorder DFS, if this
// segment is seen for the first time. (Note that
// "repfnz(krep)" may change later.)
// Baktrack dfs to its parent
if(traits.update_segrep(krep,jj))
//if (marker1(krep) < jcol )
{
segrep(nseg) = krep;
++nseg;
//marker1(krep) = jj;
}
kpar = parent(krep); // Pop recursion, mimic recursion
if (kpar == IND_EMPTY)
break; // dfs done
krep = kpar;
xdfs = xplore(krep);
maxdfs = xprune(krep);
} while (kpar != IND_EMPTY); // Do until empty stack
} // end if (myfnz = -1)
} // end if (kperm == -1)
}
/**
* \brief Performs a symbolic factorization on a panel of columns [jcol, jcol+w)
*
* A supernode representative is the last column of a supernode.
* The nonzeros in U[*,j] are segments that end at supernodes representatives
*
* The routine returns a list of the supernodal representatives
* in topological order of the dfs that generates them. This list is
* a superset of the topological order of each individual column within
* the panel.
* The location of the first nonzero in each supernodal segment
* (supernodal entry location) is also returned. Each column has
* a separate list for this purpose.
*
* Two markers arrays are used for dfs :
* marker[i] == jj, if i was visited during dfs of current column jj;
* marker1[i] >= jcol, if i was visited by earlier columns in this panel;
*
* \param [in]m number of rows in the matrix
* \param [in]w Panel size
* \param [in]jcol Starting column of the panel
* \param [in]A Input matrix in column-major storage
* \param [in]perm_r Row permutation
* \param [out]nseg Number of U segments
* \param [out]dense Accumulate the column vectors of the panel
* \param [out]panel_lsub Subscripts of the row in the panel
* \param [out]segrep Segment representative i.e first nonzero row of each segment
* \param [out]repfnz First nonzero location in each row
* \param [out]xprune
* \param [out]marker
*
*
*/
template<typename IndexVector>
struct LU_panel_dfs_traits
{
typedef typename IndexVector::Scalar Index;
LU_panel_dfs_traits(Index jcol, Index* marker)
: m_jcol(jcol), m_marker(marker)
{}
bool update_segrep(Index krep, Index jj)
{
if(m_marker[krep]<m_jcol)
{
m_marker[krep] = jj;
return true;
}
return false;
}
void mem_expand(IndexVector& /*glu.lsub*/, int /*nextl*/, int /*chmark*/) {}
enum { ExpandMem = false };
Index m_jcol;
Index* m_marker;
};
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_panel_dfs(const int m, const int w, const int jcol, MatrixType& A, IndexVector& perm_r, int& nseg, ScalarVector& dense, IndexVector& panel_lsub, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu)
{
int nextl_col; // Next available position in panel_lsub[*,jj]
// Initialize pointers
VectorBlock<IndexVector> marker1(marker, m, m);
nseg = 0;
LU_panel_dfs_traits<IndexVector> traits(jcol, marker1.data());
// For each column in the panel
for (int jj = jcol; jj < jcol + w; jj++)
{
nextl_col = (jj - jcol) * m;
VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero location in each row
VectorBlock<ScalarVector> dense_col(dense,nextl_col, m); // Accumulate a column vector here
// For each nnz in A[*, jj] do depth first search
for (typename MatrixType::InnerIterator it(A, jj); it; ++it)
{
int krow = it.row();
dense_col(krow) = it.value();
int kmark = marker(krow);
if (kmark == jj)
continue; // krow visited before, go to the next nonzero
LU_dfs_kernel(jj, perm_r, nseg, panel_lsub, segrep, repfnz_col, xprune, marker, parent,
xplore, glu, nextl_col, krow, traits);
}// end for nonzeros in column jj
} // end for column jj
}
#endif

View File

@ -0,0 +1,125 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of xpivotL.c file in SuperLU
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_PIVOTL_H
#define SPARSELU_PIVOTL_H
/**
* \brief Performs the numerical pivotin on the current column of L, and the CDIV operation.
*
* Pivot policy :
* (1) Compute thresh = u * max_(i>=j) abs(A_ij);
* (2) IF user specifies pivot row k and abs(A_kj) >= thresh THEN
* pivot row = k;
* ELSE IF abs(A_jj) >= thresh THEN
* pivot row = j;
* ELSE
* pivot row = m;
*
* Note: If you absolutely want to use a given pivot order, then set u=0.0.
*
* \param jcol The current column of L
* \param u diagonal pivoting threshold
* \param [in,out]perm_r Row permutation (threshold pivoting)
* \param [in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc'
* \param [out]pivrow The pivot row
* \param glu Global LU data
* \return 0 if success, i > 0 if U(i,i) is exactly zero
*
*/
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_pivotL(const int jcol, const RealScalar diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, int& pivrow, GlobalLU_t& glu)
{
Index fsupc = (glu.xsup)((glu.supno)(jcol)); // First column in the supernode containing the column jcol
Index nsupc = jcol - fsupc; // Number of columns in the supernode portion, excluding jcol; nsupc >=0
Index lptr = glu.xlsub(fsupc); // pointer to the starting location of the row subscripts for this supernode portion
Index nsupr = glu.xlsub(fsupc+1) - lptr; // Number of rows in the supernode
Scalar* lu_sup_ptr = &(glu.lusup.data()[glu.xlusup(fsupc)]); // Start of the current supernode
Scalar* lu_col_ptr = &(glu.lusup.data()[glu.xlusup(jcol)]); // Start of jcol in the supernode
Index* lsub_ptr = &(glu.lsub.data()[lptr]); // Start of row indices of the supernode
// Determine the largest abs numerical value for partial pivoting
Index diagind = iperm_c(jcol); // diagonal index
RealScalar pivmax = 0.0;
Index pivptr = nsupc;
Index diag = IND_EMPTY;
RealScalar rtemp;
Index isub, icol, itemp, k;
for (isub = nsupc; isub < nsupr; ++isub) {
rtemp = std::abs(lu_col_ptr[isub]);
if (rtemp > pivmax) {
pivmax = rtemp;
pivptr = isub;
}
if (lsub_ptr[isub] == diagind) diag = isub;
}
// Test for singularity
if ( pivmax == 0.0 ) {
pivrow = lsub_ptr[pivptr];
perm_r(pivrow) = jcol;
return (jcol+1);
}
RealScalar thresh = diagpivotthresh * pivmax;
// Choose appropriate pivotal element
{
// Test if the diagonal element can be used as a pivot (given the threshold value)
if (diag >= 0 )
{
// Diagonal element exists
rtemp = std::abs(lu_col_ptr[diag]);
if (rtemp != 0.0 && rtemp >= thresh) pivptr = diag;
}
pivrow = lsub_ptr[pivptr];
}
// Record pivot row
perm_r(pivrow) = jcol;
// Interchange row subscripts
if (pivptr != nsupc )
{
std::swap( lsub_ptr[pivptr], lsub_ptr[nsupc] );
// Interchange numerical values as well, for the two rows in the whole snode
// such that L is indexed the same way as A
for (icol = 0; icol <= nsupc; icol++)
{
itemp = pivptr + icol * nsupr;
std::swap(lu_sup_ptr[itemp], lu_sup_ptr[nsupc + icol * nsupr]);
}
}
// cdiv operations
Scalar temp = Scalar(1.0) / lu_col_ptr[nsupc];
for (k = nsupc+1; k < nsupr; k++)
lu_col_ptr[k] *= temp;
return 0;
}
#endif

View File

@ -0,0 +1,129 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]pruneL.c file in SuperLU
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_PRUNEL_H
#define SPARSELU_PRUNEL_H
/**
* \brief Prunes the L-structure.
*
* It prunes the L-structure of supernodes whose L-structure contains the current pivot row "pivrow"
*
*
* \param jcol The current column of L
* \param [in]perm_r Row permutation
* \param [out]pivrow The pivot row
* \param nseg Number of segments
* \param segrep
* \param repfnz
* \param [out]xprune
* \param glu Global LU data
*
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_pruneL(const int jcol, const IndexVector& perm_r, const int pivrow, const int nseg, const IndexVector& segrep, BlockIndexVector& repfnz, IndexVector& xprune, GlobalLU_t& glu)
{
// For each supernode-rep irep in U(*,j]
int jsupno = glu.supno(jcol);
int i,irep,irep1;
bool movnum, do_prune = false;
Index kmin, kmax, minloc, maxloc,krow;
for (i = 0; i < nseg; i++)
{
irep = segrep(i);
irep1 = irep + 1;
do_prune = false;
// Don't prune with a zero U-segment
if (repfnz(irep) == IND_EMPTY) continue;
// If a snode overlaps with the next panel, then the U-segment
// is fragmented into two parts -- irep and irep1. We should let
// pruning occur at the rep-column in irep1s snode.
if (glu.supno(irep) == glu.supno(irep1) ) continue; // don't prune
// If it has not been pruned & it has a nonz in row L(pivrow,i)
if (glu.supno(irep) != jsupno )
{
if ( xprune (irep) >= glu.xlsub(irep1) )
{
kmin = glu.xlsub(irep);
kmax = glu.xlsub(irep1) - 1;
for (krow = kmin; krow <= kmax; krow++)
{
if (glu.lsub(krow) == pivrow)
{
do_prune = true;
break;
}
}
}
if (do_prune)
{
// do a quicksort-type partition
// movnum=true means that the num values have to be exchanged
movnum = false;
if (irep == glu.xsup(glu.supno(irep)) ) // Snode of size 1
movnum = true;
while (kmin <= kmax)
{
if (perm_r(glu.lsub(kmax)) == IND_EMPTY)
kmax--;
else if ( perm_r(glu.lsub(kmin)) != IND_EMPTY)
kmin++;
else
{
// kmin below pivrow (not yet pivoted), and kmax
// above pivrow: interchange the two suscripts
std::swap(glu.lsub(kmin), glu.lsub(kmax));
// If the supernode has only one column, then we
// only keep one set of subscripts. For any subscript
// intercnahge performed, similar interchange must be
// done on the numerical values.
if (movnum)
{
minloc = glu.xlusup(irep) + ( kmin - glu.xlsub(irep) );
maxloc = glu.xlusup(irep) + ( kmax - glu.xlsub(irep) );
std::swap(glu.lusup(minloc), glu.lusup(maxloc));
}
kmin++;
kmax--;
}
} // end while
xprune(irep) = kmin; //Pruning
} // end if do_prune
} // end pruning
} // End for each U-segment
}
#endif

View File

@ -0,0 +1,73 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/* This file is a modified version of heap_relax_snode.c file in SuperLU
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_RELAX_SNODE_H
#define SPARSELU_RELAX_SNODE_H
/**
* \brief Identify the initial relaxed supernodes
*
* This routine is applied to a column elimination tree.
* It assumes that the matrix has been reordered according to the postorder of the etree
* \param et elimination tree
* \param relax_columns Maximum number of columns allowed in a relaxed snode
* \param descendants Number of descendants of each node in the etree
* \param relax_end last column in a supernode
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_relax_snode (const int n, IndexVector& et, const int relax_columns, IndexVector& descendants, IndexVector& relax_end)
{
// compute the number of descendants of each node in the etree
int j, parent;
relax_end.setConstant(IND_EMPTY);
descendants.setZero();
for (j = 0; j < n; j++)
{
parent = et(j);
if (parent != n) // not the dummy root
descendants(parent) += descendants(j) + 1;
}
// Identify the relaxed supernodes by postorder traversal of the etree
int snode_start; // beginning of a snode
for (j = 0; j < n; )
{
parent = et(j);
snode_start = j;
while ( parent != n && descendants(parent) < relax_columns )
{
j = parent;
parent = et(j);
}
// Found a supernode in postordered etree, j is the last column
relax_end(snode_start) = j; // Record last column
j++;
// Search for a new leaf
while (descendants(j) != 0 && j < n) j++;
} // End postorder traversal of the etree
}
#endif

View File

@ -0,0 +1,72 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]snode_bmod.c file in SuperLU
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_SNODE_BMOD_H
#define SPARSELU_SNODE_BMOD_H
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_snode_bmod (const int jcol, const int fsupc, ScalarVector& dense, GlobalLU_t& glu)
{
/* lsub : Compressed row subscripts of ( rectangular supernodes )
* xlsub : xlsub[j] is the starting location of the j-th column in lsub(*)
* lusup : Numerical values of the rectangular supernodes
* xlusup[j] is the starting location of the j-th column in lusup(*)
*/
int nextlu = glu.xlusup(jcol); // Starting location of the next column to add
int irow, isub;
// Process the supernodal portion of L\U[*,jcol]
for (isub = glu.xlsub(fsupc); isub < glu.xlsub(fsupc+1); isub++)
{
irow = glu.lsub(isub);
glu.lusup(nextlu) = dense(irow);
dense(irow) = 0;
++nextlu;
}
glu.xlusup(jcol + 1) = nextlu; // Initialize xlusup for next column ( jcol+1 )
if (fsupc < jcol ){
int luptr = glu.xlusup(fsupc); // points to the first column of the supernode
int nsupr = glu.xlsub(fsupc + 1) -glu.xlsub(fsupc); //Number of rows in the supernode
int nsupc = jcol - fsupc; // Number of columns in the supernodal portion of L\U[*,jcol]
int ufirst = glu.xlusup(jcol); // points to the beginning of column jcol in supernode L\U(jsupno)
int nrow = nsupr - nsupc; // Number of rows in the off-diagonal blocks
// Solve the triangular system for U(fsupc:jcol, jcol) with L(fspuc:jcol, fsupc:jcol)
Map<Matrix<Scalar,Dynamic,Dynamic>,0,OuterStride<> > A( &(glu.lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
VectorBlock<ScalarVector> u(glu.lusup, ufirst, nsupc);
u = A.template triangularView<UnitLower>().solve(u); // Call the Eigen dense triangular solve interface
// Update the trailing part of the column jcol U(jcol:jcol+nrow, jcol) using L(jcol:jcol+nrow, fsupc:jcol) and U(fsupc:jcol)
new (&A) Map<Matrix<Scalar,Dynamic,Dynamic>,0,OuterStride<> > ( &(glu.lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(nsupr) );
VectorBlock<ScalarVector> l(glu.lusup, ufirst+nsupc, nrow);
l.noalias() -= A * u;
}
return 0;
}
#endif

View File

@ -0,0 +1,95 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]snode_dfs.c file in SuperLU
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_SNODE_DFS_H
#define SPARSELU_SNODE_DFS_H
/**
* \brief Determine the union of the row structures of those columns within the relaxed snode.
* NOTE: The relaxed snodes are leaves of the supernodal etree, therefore,
* the portion outside the rectangular supernode must be zero.
*
* \param jcol start of the supernode
* \param kcol end of the supernode
* \param asub Row indices
* \param colptr Pointer to the beginning of each column
* \param xprune (out) The pruned tree ??
* \param marker (in/out) working vector
* \return 0 on success, > 0 size of the memory when memory allocation failed
*/
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_snode_dfs(const int jcol, const int kcol,const MatrixType& mat, IndexVector& xprune, IndexVector& marker, GlobalLU_t& glu)
{
int mem;
Index nsuper = ++glu.supno(jcol); // Next available supernode number
int nextl = glu.xlsub(jcol); //Index of the starting location of the jcol-th column in lsub
int krow,kmark;
for (int i = jcol; i <=kcol; i++)
{
// For each nonzero in A(*,i)
for (typename MatrixType::InnerIterator it(mat, i); it; ++it)
{
krow = it.row();
kmark = marker(krow);
if ( kmark != kcol )
{
// First time to visit krow
marker(krow) = kcol;
glu.lsub(nextl++) = krow;
if( nextl >= glu.nzlmax )
{
mem = LUMemXpand<IndexVector>(glu.lsub, glu.nzlmax, nextl, LSUB, glu.num_expansions);
if (mem) return mem; // Memory expansion failed... Return the memory allocated so far
}
}
}
glu.supno(i) = nsuper;
}
// If supernode > 1, then make a copy of the subscripts for pruning
if (jcol < kcol)
{
Index new_next = nextl + (nextl - glu.xlsub(jcol));
while (new_next > glu.nzlmax)
{
mem = LUMemXpand<IndexVector>(glu.lsub, glu.nzlmax, nextl, LSUB, glu.num_expansions);
if (mem) return mem; // Memory expansion failed... Return the memory allocated so far
}
Index ifrom, ito = nextl;
for (ifrom = glu.xlsub(jcol); ifrom < nextl;)
glu.lsub(ito++) = glu.lsub(ifrom++);
for (int i = jcol+1; i <=kcol; i++) glu.xlsub(i) = nextl;
nextl = ito;
}
glu.xsup(nsuper+1) = kcol + 1; // Start of next available supernode
glu.supno(kcol+1) = nsuper;
xprune(kcol) = nextl;
glu.xlsub(kcol+1) = nextl;
return 0;
}
#endif

View File

@ -612,6 +612,7 @@ void SuperLU<MatrixType>::factorize(const MatrixType& a)
this->initFactorization(a); this->initFactorization(a);
m_sluOptions.ColPerm = COLAMD;
int info = 0; int info = 0;
RealScalar recip_pivot_growth, rcond; RealScalar recip_pivot_growth, rcond;
RealScalar ferr, berr; RealScalar ferr, berr;

View File

@ -33,7 +33,8 @@ EIGEN_MAKE_CWISE_BINARY_OP(min,internal::scalar_min_op)
* *
* \sa max() * \sa max()
*/ */
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const ConstantReturnType> EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived,
const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> >
(min)(const Scalar &other) const (min)(const Scalar &other) const
{ {
return (min)(Derived::PlainObject::Constant(rows(), cols(), other)); return (min)(Derived::PlainObject::Constant(rows(), cols(), other));
@ -52,7 +53,8 @@ EIGEN_MAKE_CWISE_BINARY_OP(max,internal::scalar_max_op)
* *
* \sa min() * \sa min()
*/ */
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const ConstantReturnType> EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived,
const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> >
(max)(const Scalar &other) const (max)(const Scalar &other) const
{ {
return (max)(Derived::PlainObject::Constant(rows(), cols(), other)); return (max)(Derived::PlainObject::Constant(rows(), cols(), other));

View File

@ -200,3 +200,4 @@ EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator<=, std::less_equal)
EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator>, std::greater) EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator>, std::greater)
EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator>=, std::greater_equal) EIGEN_MAKE_SCALAR_CWISE_UNARY_OP(operator>=, std::greater_equal)

View File

@ -55,6 +55,12 @@ if(PASTIX_FOUND AND BLAS_FOUND)
set(PASTIX_ALL_LIBS ${PASTIX_LIBRARIES} ${BLAS_LIBRARIES}) set(PASTIX_ALL_LIBS ${PASTIX_LIBRARIES} ${BLAS_LIBRARIES})
endif(PASTIX_FOUND AND BLAS_FOUND) endif(PASTIX_FOUND AND BLAS_FOUND)
if(METIS_FOUND)
include_directories(${METIS_INCLUDES})
set (SPARSE_LIBS ${SPARSE_LIBS} ${METIS_LIBRARIES})
add_definitions("-DEIGEN_METIS_SUPPORT")
endif(METIS_FOUND)
find_library(RT_LIBRARY rt) find_library(RT_LIBRARY rt)
if(RT_LIBRARY) if(RT_LIBRARY)
set(SPARSE_LIBS ${SPARSE_LIBS} ${RT_LIBRARY}) set(SPARSE_LIBS ${SPARSE_LIBS} ${RT_LIBRARY})
@ -63,3 +69,10 @@ endif(RT_LIBRARY)
add_executable(spbenchsolver spbenchsolver.cpp) add_executable(spbenchsolver spbenchsolver.cpp)
target_link_libraries (spbenchsolver ${SPARSE_LIBS}) target_link_libraries (spbenchsolver ${SPARSE_LIBS})
add_executable(spsolver sp_solver.cpp)
target_link_libraries (spsolver ${SPARSE_LIBS})
add_executable(test_sparseLU test_sparseLU.cpp)
target_link_libraries (test_sparseLU ${SPARSE_LIBS})

125
bench/spbench/sp_solver.cpp Normal file
View File

@ -0,0 +1,125 @@
// Small bench routine for Eigen available in Eigen
// (C) Desire NUENTSA WAKAM, INRIA
#include <iostream>
#include <fstream>
#include <iomanip>
#include <Eigen/Jacobi>
#include <Eigen/Householder>
#include <Eigen/IterativeLinearSolvers>
#include <Eigen/LU>
#include <unsupported/Eigen/SparseExtra>
//#include <Eigen/SparseLU>
#include <Eigen/SuperLUSupport>
// #include <unsupported/Eigen/src/IterativeSolvers/Scaling.h>
#include <bench/BenchTimer.h>
#include <unsupported/Eigen/IterativeSolvers>
using namespace std;
using namespace Eigen;
int main(int argc, char **args)
{
SparseMatrix<double, ColMajor> A;
typedef SparseMatrix<double, ColMajor>::Index Index;
typedef Matrix<double, Dynamic, Dynamic> DenseMatrix;
typedef Matrix<double, Dynamic, 1> DenseRhs;
VectorXd b, x, tmp;
BenchTimer timer,totaltime;
//SparseLU<SparseMatrix<double, ColMajor> > solver;
// SuperLU<SparseMatrix<double, ColMajor> > solver;
ConjugateGradient<SparseMatrix<double, ColMajor>, Lower,IncompleteCholesky<double,Lower> > solver;
ifstream matrix_file;
string line;
int n;
// Set parameters
// solver.iparm(IPARM_THREAD_NBR) = 4;
/* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */
if (argc < 2) assert(false && "please, give the matrix market file ");
timer.start();
totaltime.start();
loadMarket(A, args[1]);
cout << "End charging matrix " << endl;
bool iscomplex=false, isvector=false;
int sym;
getMarketHeader(args[1], sym, iscomplex, isvector);
if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; }
if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;}
if (sym != 0) { // symmetric matrices, only the lower part is stored
SparseMatrix<double, ColMajor> temp;
temp = A;
A = temp.selfadjointView<Lower>();
}
timer.stop();
n = A.cols();
// ====== TESTS FOR SPARSE TUTORIAL ======
// cout<< "OuterSize " << A.outerSize() << " inner " << A.innerSize() << endl;
// SparseMatrix<double, RowMajor> mat1(A);
// SparseMatrix<double, RowMajor> mat2;
// cout << " norm of A " << mat1.norm() << endl; ;
// PermutationMatrix<Dynamic, Dynamic, int> perm(n);
// perm.resize(n,1);
// perm.indices().setLinSpaced(n, 0, n-1);
// mat2 = perm * mat1;
// mat.subrows();
// mat2.resize(n,n);
// mat2.reserve(10);
// mat2.setConstant();
// std::cout<< "NORM " << mat1.squaredNorm()<< endl;
cout<< "Time to load the matrix " << timer.value() <<endl;
/* Fill the right hand side */
// solver.set_restart(374);
if (argc > 2)
loadMarketVector(b, args[2]);
else
{
b.resize(n);
tmp.resize(n);
// tmp.setRandom();
for (int i = 0; i < n; i++) tmp(i) = i;
b = A * tmp ;
}
// Scaling<SparseMatrix<double> > scal;
// scal.computeRef(A);
// b = scal.LeftScaling().cwiseProduct(b);
/* Compute the factorization */
cout<< "Starting the factorization "<< endl;
timer.reset();
timer.start();
cout<< "Size of Input Matrix "<< b.size()<<"\n\n";
cout<< "Rows and columns "<< A.rows() <<" " <<A.cols() <<"\n";
solver.compute(A);
// solver.analyzePattern(A);
// solver.factorize(A);
if (solver.info() != Success) {
std::cout<< "The solver failed \n";
return -1;
}
timer.stop();
float time_comp = timer.value();
cout <<" Compute Time " << time_comp<< endl;
timer.reset();
timer.start();
x = solver.solve(b);
// x = scal.RightScaling().cwiseProduct(x);
timer.stop();
float time_solve = timer.value();
cout<< " Time to solve " << time_solve << endl;
/* Check the accuracy */
VectorXd tmp2 = b - A*x;
double tempNorm = tmp2.norm()/b.norm();
cout << "Relative norm of the computed solution : " << tempNorm <<"\n";
// cout << "Iterations : " << solver.iterations() << "\n";
totaltime.stop();
cout << "Total time " << totaltime.value() << "\n";
// std::cout<<x.transpose()<<"\n";
return 0;
}

View File

@ -1,83 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
<!-- Desire Nuentsa, Inria -->
<xsl:output method="html" indent="no"/>
<xsl:template match="/"> <!-- Root of the document -->
<html>
<head>
<style type="text/css">
td { white-space: nowrap;}
</style>
</head>
<body>
<table border="1" width="100%" height="100%">
<TR> <!-- Write the table header -->
<TH>Matrix</TH> <TH>N</TH> <TH> NNZ</TH> <TH> Sym</TH> <TH> SPD</TH> <TH> </TH>
<xsl:for-each select="BENCH/AVAILSOLVER/SOLVER">
<xsl:sort select="@ID" data-type="number"/>
<TH>
<xsl:value-of select="TYPE" />
<xsl:text></xsl:text>
<xsl:value-of select="PACKAGE" />
<xsl:text></xsl:text>
</TH>
</xsl:for-each>
</TR>
<xsl:for-each select="BENCH/LINEARSYSTEM">
<TR> <!-- print statistics for one linear system-->
<TH rowspan="4"> <xsl:value-of select="MATRIX/NAME" /> </TH>
<TD rowspan="4"> <xsl:value-of select="MATRIX/SIZE" /> </TD>
<TD rowspan="4"> <xsl:value-of select="MATRIX/ENTRIES" /> </TD>
<TD rowspan="4"> <xsl:value-of select="MATRIX/SYMMETRY" /> </TD>
<TD rowspan="4"> <xsl:value-of select="MATRIX/POSDEF" /> </TD>
<TH> Compute Time </TH>
<xsl:for-each select="SOLVER_STAT">
<xsl:sort select="@ID" data-type="number"/>
<TD> <xsl:value-of select="TIME/COMPUTE" /> </TD>
</xsl:for-each>
</TR>
<TR>
<TH> Solve Time </TH>
<xsl:for-each select="SOLVER_STAT">
<xsl:sort select="@ID" data-type="number"/>
<TD> <xsl:value-of select="TIME/SOLVE" /> </TD>
</xsl:for-each>
</TR>
<TR>
<TH> Total Time </TH>
<xsl:for-each select="SOLVER_STAT">
<xsl:sort select="@ID" data-type="number"/>
<xsl:choose>
<xsl:when test="@ID=../BEST_SOLVER/@ID">
<TD style="background-color:red"> <xsl:value-of select="TIME/TOTAL" /> </TD>
</xsl:when>
<xsl:otherwise>
<TD> <xsl:value-of select="TIME/TOTAL" /></TD>
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>
</TR>
<TR>
<TH> Error </TH>
<xsl:for-each select="SOLVER_STAT">
<xsl:sort select="@ID" data-type="number"/>
<TD> <xsl:value-of select="ERROR" />
<xsl:if test="ITER">
<xsl:text>(</xsl:text>
<xsl:value-of select="ITER" />
<xsl:text>)</xsl:text>
</xsl:if> </TD>
</xsl:for-each>
</TR>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

View File

@ -14,7 +14,7 @@ void bench_printhelp()
cout<< " OPTIONS : \n"; cout<< " OPTIONS : \n";
cout<< " -h or --help \n print this help and return\n\n"; cout<< " -h or --help \n print this help and return\n\n";
cout<< " -d matrixdir \n Use matrixdir as the matrix folder instead of the one specified in the environment variable EIGEN_MATRIXDIR\n\n"; cout<< " -d matrixdir \n Use matrixdir as the matrix folder instead of the one specified in the environment variable EIGEN_MATRIXDIR\n\n";
cout<< " -o outputfile.html \n Output the statistics to a html file \n\n"; cout<< " -o outputfile.xml \n Output the statistics to a xml file \n\n";
cout<< " --eps <RelErr> Sets the relative tolerance for iterative solvers (default 1e-08) \n\n"; cout<< " --eps <RelErr> Sets the relative tolerance for iterative solvers (default 1e-08) \n\n";
cout<< " --maxits <MaxIts> Sets the maximum number of iterations (default 1000) \n\n"; cout<< " --maxits <MaxIts> Sets the maximum number of iterations (default 1000) \n\n";

View File

@ -10,7 +10,7 @@
#include <iostream> #include <iostream>
#include <fstream> #include <fstream>
#include "Eigen/SparseCore" #include <Eigen/SparseCore>
#include <bench/BenchTimer.h> #include <bench/BenchTimer.h>
#include <cstdlib> #include <cstdlib>
#include <string> #include <string>
@ -21,6 +21,13 @@
#include <unsupported/Eigen/IterativeSolvers> #include <unsupported/Eigen/IterativeSolvers>
#include <Eigen/LU> #include <Eigen/LU>
#include <unsupported/Eigen/SparseExtra> #include <unsupported/Eigen/SparseExtra>
#include <Eigen/SparseLU>
#include "spbenchstyle.h"
#ifdef EIGEN_METIS_SUPPORT
#include <Eigen/MetisSupport>
#endif
#ifdef EIGEN_CHOLMOD_SUPPORT #ifdef EIGEN_CHOLMOD_SUPPORT
#include <Eigen/CholmodSupport> #include <Eigen/CholmodSupport>
@ -43,26 +50,27 @@
#endif #endif
// CONSTANTS // CONSTANTS
#define EIGEN_UMFPACK 0 #define EIGEN_UMFPACK 10
#define EIGEN_SUPERLU 1 #define EIGEN_SUPERLU 20
#define EIGEN_PASTIX 2 #define EIGEN_PASTIX 30
#define EIGEN_PARDISO 3 #define EIGEN_PARDISO 40
#define EIGEN_BICGSTAB 4 #define EIGEN_SPARSELU_COLAMD 50
#define EIGEN_BICGSTAB_ILUT 5 #define EIGEN_SPARSELU_METIS 51
#define EIGEN_GMRES 6 #define EIGEN_BICGSTAB 60
#define EIGEN_GMRES_ILUT 7 #define EIGEN_BICGSTAB_ILUT 61
#define EIGEN_SIMPLICIAL_LDLT 8 #define EIGEN_GMRES 70
#define EIGEN_CHOLMOD_LDLT 9 #define EIGEN_GMRES_ILUT 71
#define EIGEN_PASTIX_LDLT 10 #define EIGEN_SIMPLICIAL_LDLT 80
#define EIGEN_PARDISO_LDLT 11 #define EIGEN_CHOLMOD_LDLT 90
#define EIGEN_SIMPLICIAL_LLT 12 #define EIGEN_PASTIX_LDLT 100
#define EIGEN_CHOLMOD_SUPERNODAL_LLT 13 #define EIGEN_PARDISO_LDLT 110
#define EIGEN_CHOLMOD_SIMPLICIAL_LLT 14 #define EIGEN_SIMPLICIAL_LLT 120
#define EIGEN_PASTIX_LLT 15 #define EIGEN_CHOLMOD_SUPERNODAL_LLT 130
#define EIGEN_PARDISO_LLT 16 #define EIGEN_CHOLMOD_SIMPLICIAL_LLT 140
#define EIGEN_CG 17 #define EIGEN_PASTIX_LLT 150
#define EIGEN_CG_PRECOND 18 #define EIGEN_PARDISO_LLT 160
#define EIGEN_ALL_SOLVERS 19 #define EIGEN_CG 170
#define EIGEN_CG_PRECOND 180
using namespace Eigen; using namespace Eigen;
using namespace std; using namespace std;
@ -85,107 +93,118 @@ void printStatheader(std::ofstream& out)
// Print XML header // Print XML header
// NOTE It would have been much easier to write these XML documents using external libraries like tinyXML or Xerces-C++. // NOTE It would have been much easier to write these XML documents using external libraries like tinyXML or Xerces-C++.
out << "<?xml version=\"1.0\" encoding=\"UTF-8\"?> \n"; out << "<?xml version='1.0' encoding='UTF-8'?> \n";
out << "<?xml-stylesheet type=\"text/xsl\" href=\"spbench.xsl\" ?> \n"; out << "<?xml-stylesheet type='text/xsl' href='#stylesheet' ?> \n";
out << "<!DOCTYPE BENCH SYSTEM \"spbench.dtd\"> \n"; out << "<!DOCTYPE BENCH [\n<!ATTLIST xsl:stylesheet\n id\t ID #REQUIRED>\n]>";
out << "\n<!-- Generated by the Eigen library -->\n"; out << "\n\n<!-- Generated by the Eigen library -->\n";
out << "\n<BENCH> \n" ; //root XML element
// Write the root XML element // Print the xsl style section
out << "\n<BENCH> \n" ; printBenchStyle(out);
// List all available solvers // List all available solvers
out << " <AVAILSOLVER> \n"; out << " <AVAILSOLVER> \n";
#ifdef EIGEN_UMFPACK_SUPPORT #ifdef EIGEN_UMFPACK_SUPPORT
out <<" <SOLVER ID=\"" << EIGEN_UMFPACK << "\">\n"; out <<" <SOLVER ID='" << EIGEN_UMFPACK << "'>\n";
out << " <TYPE> LU </TYPE> \n"; out << " <TYPE> LU </TYPE> \n";
out << " <PACKAGE> UMFPACK </PACKAGE> \n"; out << " <PACKAGE> UMFPACK </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
#endif #endif
#ifdef EIGEN_SUPERLU_SUPPORT #ifdef EIGEN_SUPERLU_SUPPORT
out <<" <SOLVER ID=\"" << EIGEN_SUPERLU << "\">\n"; out <<" <SOLVER ID='" << EIGEN_SUPERLU << "'>\n";
out << " <TYPE> LU </TYPE> \n"; out << " <TYPE> LU </TYPE> \n";
out << " <PACKAGE> SUPERLU </PACKAGE> \n"; out << " <PACKAGE> SUPERLU </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
#endif #endif
#ifdef EIGEN_CHOLMOD_SUPPORT #ifdef EIGEN_CHOLMOD_SUPPORT
out <<" <SOLVER ID=\"" << EIGEN_CHOLMOD_SIMPLICIAL_LLT << "\">\n"; out <<" <SOLVER ID='" << EIGEN_CHOLMOD_SIMPLICIAL_LLT << "'>\n";
out << " <TYPE> LLT SP</TYPE> \n"; out << " <TYPE> LLT SP</TYPE> \n";
out << " <PACKAGE> CHOLMOD </PACKAGE> \n"; out << " <PACKAGE> CHOLMOD </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
out <<" <SOLVER ID=\"" << EIGEN_CHOLMOD_SUPERNODAL_LLT << "\">\n"; out <<" <SOLVER ID='" << EIGEN_CHOLMOD_SUPERNODAL_LLT << "'>\n";
out << " <TYPE> LLT</TYPE> \n"; out << " <TYPE> LLT</TYPE> \n";
out << " <PACKAGE> CHOLMOD </PACKAGE> \n"; out << " <PACKAGE> CHOLMOD </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
out <<" <SOLVER ID=\"" << EIGEN_CHOLMOD_LDLT << "\">\n"; out <<" <SOLVER ID='" << EIGEN_CHOLMOD_LDLT << "'>\n";
out << " <TYPE> LDLT </TYPE> \n"; out << " <TYPE> LDLT </TYPE> \n";
out << " <PACKAGE> CHOLMOD </PACKAGE> \n"; out << " <PACKAGE> CHOLMOD </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
#endif #endif
#ifdef EIGEN_PARDISO_SUPPORT #ifdef EIGEN_PARDISO_SUPPORT
out <<" <SOLVER ID=\"" << EIGEN_PARDISO << "\">\n"; out <<" <SOLVER ID='" << EIGEN_PARDISO << "'>\n";
out << " <TYPE> LU </TYPE> \n"; out << " <TYPE> LU </TYPE> \n";
out << " <PACKAGE> PARDISO </PACKAGE> \n"; out << " <PACKAGE> PARDISO </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
out <<" <SOLVER ID=\"" << EIGEN_PARDISO_LLT << "\">\n"; out <<" <SOLVER ID='" << EIGEN_PARDISO_LLT << "'>\n";
out << " <TYPE> LLT </TYPE> \n"; out << " <TYPE> LLT </TYPE> \n";
out << " <PACKAGE> PARDISO </PACKAGE> \n"; out << " <PACKAGE> PARDISO </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
out <<" <SOLVER ID=\"" << EIGEN_PARDISO_LDLT << "\">\n"; out <<" <SOLVER ID='" << EIGEN_PARDISO_LDLT << "'>\n";
out << " <TYPE> LDLT </TYPE> \n"; out << " <TYPE> LDLT </TYPE> \n";
out << " <PACKAGE> PARDISO </PACKAGE> \n"; out << " <PACKAGE> PARDISO </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
#endif #endif
#ifdef EIGEN_PASTIX_SUPPORT #ifdef EIGEN_PASTIX_SUPPORT
out <<" <SOLVER ID=\"" << EIGEN_PASTIX << "\">\n"; out <<" <SOLVER ID='" << EIGEN_PASTIX << "'>\n";
out << " <TYPE> LU </TYPE> \n"; out << " <TYPE> LU </TYPE> \n";
out << " <PACKAGE> PASTIX </PACKAGE> \n"; out << " <PACKAGE> PASTIX </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
out <<" <SOLVER ID=\"" << EIGEN_PASTIX_LLT << "\">\n"; out <<" <SOLVER ID='" << EIGEN_PASTIX_LLT << "'>\n";
out << " <TYPE> LLT </TYPE> \n"; out << " <TYPE> LLT </TYPE> \n";
out << " <PACKAGE> PASTIX </PACKAGE> \n"; out << " <PACKAGE> PASTIX </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
out <<" <SOLVER ID=\"" << EIGEN_PASTIX_LDLT << "\">\n"; out <<" <SOLVER ID='" << EIGEN_PASTIX_LDLT << "'>\n";
out << " <TYPE> LDLT </TYPE> \n"; out << " <TYPE> LDLT </TYPE> \n";
out << " <PACKAGE> PASTIX </PACKAGE> \n"; out << " <PACKAGE> PASTIX </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
#endif #endif
out <<" <SOLVER ID=\"" << EIGEN_BICGSTAB << "\">\n"; out <<" <SOLVER ID='" << EIGEN_BICGSTAB << "'>\n";
out << " <TYPE> BICGSTAB </TYPE> \n"; out << " <TYPE> BICGSTAB </TYPE> \n";
out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
out <<" <SOLVER ID=\"" << EIGEN_BICGSTAB_ILUT << "\">\n"; out <<" <SOLVER ID='" << EIGEN_BICGSTAB_ILUT << "'>\n";
out << " <TYPE> BICGSTAB_ILUT </TYPE> \n"; out << " <TYPE> BICGSTAB_ILUT </TYPE> \n";
out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
out <<" <SOLVER ID=\"" << EIGEN_GMRES_ILUT << "\">\n"; out <<" <SOLVER ID='" << EIGEN_GMRES_ILUT << "'>\n";
out << " <TYPE> GMRES_ILUT </TYPE> \n"; out << " <TYPE> GMRES_ILUT </TYPE> \n";
out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
out <<" <SOLVER ID=\"" << EIGEN_SIMPLICIAL_LDLT << "\">\n"; out <<" <SOLVER ID='" << EIGEN_SIMPLICIAL_LDLT << "'>\n";
out << " <TYPE> LDLT </TYPE> \n"; out << " <TYPE> LDLT </TYPE> \n";
out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
out <<" <SOLVER ID=\"" << EIGEN_SIMPLICIAL_LLT << "\">\n"; out <<" <SOLVER ID='" << EIGEN_SIMPLICIAL_LLT << "'>\n";
out << " <TYPE> LLT </TYPE> \n"; out << " <TYPE> LLT </TYPE> \n";
out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
out <<" <SOLVER ID=\"" << EIGEN_CG << "\">\n"; out <<" <SOLVER ID='" << EIGEN_CG << "'>\n";
out << " <TYPE> CG </TYPE> \n"; out << " <TYPE> CG </TYPE> \n";
out << " <PACKAGE> EIGEN </PACKAGE> \n"; out << " <PACKAGE> EIGEN </PACKAGE> \n";
out << " </SOLVER> \n"; out << " </SOLVER> \n";
out <<" <SOLVER ID='" << EIGEN_SPARSELU_COLAMD << "'>\n";
out << " <TYPE> LU_COLAMD </TYPE> \n";
out << " <PACKAGE> EIGEN </PACKAGE> \n";
out << " </SOLVER> \n";
#ifdef EIGEN_METIS_SUPPORT
out <<" <SOLVER ID='" << EIGEN_SPARSELU_METIS << "'>\n";
out << " <TYPE> LU_METIS </TYPE> \n";
out << " <PACKAGE> EIGEN </PACKAGE> \n";
out << " </SOLVER> \n";
#endif
out << " </AVAILSOLVER> \n"; out << " </AVAILSOLVER> \n";
} }
@ -260,7 +279,7 @@ template<typename Solver, typename Scalar>
void call_directsolver(Solver& solver, const int solver_id, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX, std::string& statFile) void call_directsolver(Solver& solver, const int solver_id, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX, std::string& statFile)
{ {
std::ofstream statbuf(statFile.c_str(), std::ios::app); std::ofstream statbuf(statFile.c_str(), std::ios::app);
statbuf << " <SOLVER_STAT ID=\"" << solver_id <<"\">\n"; statbuf << " <SOLVER_STAT ID='" << solver_id <<"'>\n";
call_solver(solver, solver_id, A, b, refX,statbuf); call_solver(solver, solver_id, A, b, refX,statbuf);
statbuf << " </SOLVER_STAT>\n"; statbuf << " </SOLVER_STAT>\n";
statbuf.close(); statbuf.close();
@ -273,7 +292,7 @@ void call_itersolver(Solver &solver, const int solver_id, const typename Solver:
solver.setMaxIterations(MaximumIters); solver.setMaxIterations(MaximumIters);
std::ofstream statbuf(statFile.c_str(), std::ios::app); std::ofstream statbuf(statFile.c_str(), std::ios::app);
statbuf << " <SOLVER_STAT ID=\"" << solver_id <<"\">\n"; statbuf << " <SOLVER_STAT ID='" << solver_id <<"'>\n";
call_solver(solver, solver_id, A, b, refX,statbuf); call_solver(solver, solver_id, A, b, refX,statbuf);
statbuf << " <ITER> "<< solver.iterations() << "</ITER>\n"; statbuf << " <ITER> "<< solver.iterations() << "</ITER>\n";
statbuf << " </SOLVER_STAT>\n"; statbuf << " </SOLVER_STAT>\n";
@ -303,7 +322,6 @@ void SelectSolvers(const SparseMatrix<Scalar>&A, unsigned int sym, Matrix<Scalar
cout << "\nSolving with SUPERLU ... \n"; cout << "\nSolving with SUPERLU ... \n";
SuperLU<SpMat> solver; SuperLU<SpMat> solver;
call_directsolver(solver, EIGEN_SUPERLU, A, b, refX,statFile); call_directsolver(solver, EIGEN_SUPERLU, A, b, refX,statFile);
printStatItem(stat, best_time_id, best_time_val);
} }
#endif #endif
@ -325,7 +343,18 @@ void SelectSolvers(const SparseMatrix<Scalar>&A, unsigned int sym, Matrix<Scalar
} }
#endif #endif
// Eigen SparseLU METIS
cout << "\n Solving with Sparse LU AND COLAMD ... \n";
SparseLU<SpMat, COLAMDOrdering<int> > solver;
call_directsolver(solver, EIGEN_SPARSELU_COLAMD, A, b, refX, statFile);
// Eigen SparseLU METIS
#ifdef EIGEN_METIS_SUPPORT
{
cout << "\n Solving with Sparse LU AND METIS ... \n";
SparseLU<SpMat, MetisOrdering<int> > solver;
call_directsolver(solver, EIGEN_SPARSELU_METIS, A, b, refX, statFile);
}
#endif
//BiCGSTAB //BiCGSTAB
{ {
@ -448,7 +477,6 @@ void SelectSolvers(const SparseMatrix<Scalar>&A, unsigned int sym, Matrix<Scalar
// cout << "\nSolving with CG and IdentityPreconditioner ... \n"; // cout << "\nSolving with CG and IdentityPreconditioner ... \n";
// ConjugateGradient<SpMat, Lower, IdentityPreconditioner> solver; // ConjugateGradient<SpMat, Lower, IdentityPreconditioner> solver;
// call_itersolver(solver,EIGEN_CG_PRECOND, A, b, refX,statFile); // call_itersolver(solver,EIGEN_CG_PRECOND, A, b, refX,statFile);
// printStatItem(stat, best_time_id, best_time_val);
// } // }
} // End SPD matrices } // End SPD matrices
} }
@ -504,8 +532,8 @@ void Browse_Matrices(const string folder, bool statFileExists, std::string& stat
if(statFileExists) if(statFileExists)
{ {
std::ofstream statbuf(statFile.c_str(), std::ios::app); std::ofstream statbuf(statFile.c_str(), std::ios::app);
statbuf << " <BEST_SOLVER ID=\""<< best_time_id statbuf << " <BEST_SOLVER ID='"<< best_time_id
<< "\"></BEST_SOLVER>\n"; << "'></BEST_SOLVER>\n";
statbuf << " </LINEARSYSTEM> \n"; statbuf << " </LINEARSYSTEM> \n";
statbuf.close(); statbuf.close();
} }

View File

@ -0,0 +1,94 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef SPBENCHSTYLE_H
#define SPBENCHSTYLE_H
void printBenchStyle(std::ofstream& out)
{
out << "<xsl:stylesheet id='stylesheet' version='1.0' \
xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >\n \
<xsl:template match='xsl:stylesheet' />\n \
<xsl:template match='/'> <!-- Root of the document -->\n \
<html>\n \
<head> \n \
<style type='text/css'> \n \
td { white-space: nowrap;}\n \
</style>\n \
</head>\n \
<body>";
out<<"<table border='1' width='100%' height='100%'>\n \
<TR> <!-- Write the table header -->\n \
<TH>Matrix</TH> <TH>N</TH> <TH> NNZ</TH> <TH> Sym</TH> <TH> SPD</TH> <TH> </TH>\n \
<xsl:for-each select='BENCH/AVAILSOLVER/SOLVER'>\n \
<xsl:sort select='@ID' data-type='number'/>\n \
<TH>\n \
<xsl:value-of select='TYPE' />\n \
<xsl:text></xsl:text>\n \
<xsl:value-of select='PACKAGE' />\n \
<xsl:text></xsl:text>\n \
</TH>\n \
</xsl:for-each>\n \
</TR>";
out<<" <xsl:for-each select='BENCH/LINEARSYSTEM'>\n \
<TR> <!-- print statistics for one linear system-->\n \
<TH rowspan='4'> <xsl:value-of select='MATRIX/NAME' /> </TH>\n \
<TD rowspan='4'> <xsl:value-of select='MATRIX/SIZE' /> </TD>\n \
<TD rowspan='4'> <xsl:value-of select='MATRIX/ENTRIES' /> </TD>\n \
<TD rowspan='4'> <xsl:value-of select='MATRIX/SYMMETRY' /> </TD>\n \
<TD rowspan='4'> <xsl:value-of select='MATRIX/POSDEF' /> </TD>\n \
<TH> Compute Time </TH>\n \
<xsl:for-each select='SOLVER_STAT'>\n \
<xsl:sort select='@ID' data-type='number'/>\n \
<TD> <xsl:value-of select='TIME/COMPUTE' /> </TD>\n \
</xsl:for-each>\n \
</TR>";
out<<" <TR>\n \
<TH> Solve Time </TH>\n \
<xsl:for-each select='SOLVER_STAT'>\n \
<xsl:sort select='@ID' data-type='number'/>\n \
<TD> <xsl:value-of select='TIME/SOLVE' /> </TD>\n \
</xsl:for-each>\n \
</TR>\n \
<TR>\n \
<TH> Total Time </TH>\n \
<xsl:for-each select='SOLVER_STAT'>\n \
<xsl:sort select='@ID' data-type='number'/>\n \
<xsl:choose>\n \
<xsl:when test='@ID=../BEST_SOLVER/@ID'>\n \
<TD style='background-color:red'> <xsl:value-of select='TIME/TOTAL' /> </TD>\n \
</xsl:when>\n \
<xsl:otherwise>\n \
<TD> <xsl:value-of select='TIME/TOTAL' /></TD>\n \
</xsl:otherwise>\n \
</xsl:choose>\n \
</xsl:for-each>\n \
</TR>";
out<<" <TR>\n \
<TH> Error </TH>\n \
<xsl:for-each select='SOLVER_STAT'>\n \
<xsl:sort select='@ID' data-type='number'/>\n \
<TD> <xsl:value-of select='ERROR' />\n \
<xsl:if test='ITER'>\n \
<xsl:text>(</xsl:text>\n \
<xsl:value-of select='ITER' />\n \
<xsl:text>)</xsl:text>\n \
</xsl:if> </TD>\n \
</xsl:for-each>\n \
</TR>\n \
</xsl:for-each>\n \
</table>\n \
</body>\n \
</html>\n \
</xsl:template>\n \
</xsl:stylesheet>\n\n";
}
#endif

View File

@ -0,0 +1,93 @@
// Small bench routine for Eigen available in Eigen
// (C) Desire NUENTSA WAKAM, INRIA
#include <iostream>
#include <fstream>
#include <iomanip>
#include <unsupported/Eigen/SparseExtra>
#include <Eigen/SparseLU>
#include <bench/BenchTimer.h>
#ifdef EIGEN_METIS_SUPPORT
#include <Eigen/MetisSupport>
#endif
using namespace std;
using namespace Eigen;
int main(int argc, char **args)
{
// typedef complex<double> scalar;
typedef double scalar;
SparseMatrix<scalar, ColMajor> A;
typedef SparseMatrix<scalar, ColMajor>::Index Index;
typedef Matrix<scalar, Dynamic, Dynamic> DenseMatrix;
typedef Matrix<scalar, Dynamic, 1> DenseRhs;
Matrix<scalar, Dynamic, 1> b, x, tmp;
// SparseLU<SparseMatrix<scalar, ColMajor>, AMDOrdering<int> > solver;
// #ifdef EIGEN_METIS_SUPPORT
// SparseLU<SparseMatrix<scalar, ColMajor>, MetisOrdering<int> > solver;
// std::cout<< "ORDERING : METIS\n";
// #else
SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<int> > solver;
std::cout<< "ORDERING : COLAMD\n";
// #endif
ifstream matrix_file;
string line;
int n;
BenchTimer timer;
// Set parameters
/* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */
if (argc < 2) assert(false && "please, give the matrix market file ");
loadMarket(A, args[1]);
cout << "End charging matrix " << endl;
bool iscomplex=false, isvector=false;
int sym;
getMarketHeader(args[1], sym, iscomplex, isvector);
// if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; }
if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;}
if (sym != 0) { // symmetric matrices, only the lower part is stored
SparseMatrix<scalar, ColMajor> temp;
temp = A;
A = temp.selfadjointView<Lower>();
}
n = A.cols();
/* Fill the right hand side */
if (argc > 2)
loadMarketVector(b, args[2]);
else
{
b.resize(n);
tmp.resize(n);
// tmp.setRandom();
for (int i = 0; i < n; i++) tmp(i) = i;
b = A * tmp ;
}
/* Compute the factorization */
// solver.isSymmetric(true);
timer.start();
// solver.compute(A);
solver.analyzePattern(A);
timer.stop();
cout << "Time to analyze " << timer.value() << std::endl;
timer.reset();
timer.start();
solver.factorize(A);
timer.stop();
cout << "Factorize Time " << timer.value() << std::endl;
timer.reset();
timer.start();
x = solver.solve(b);
timer.stop();
cout << "solve time " << timer.value() << std::endl;
/* Check the accuracy */
Matrix<scalar, Dynamic, 1> tmp2 = b - A*x;
scalar tempNorm = tmp2.norm()/b.norm();
cout << "Relative norm of the computed solution : " << tempNorm <<"\n";
cout << "Number of nonzeros in the factor : " << solver.nnzL() + solver.nnzU() << std::endl;
return 0;
}

View File

@ -10,6 +10,9 @@
#ifndef EIGEN_BLAS_COMMON_H #ifndef EIGEN_BLAS_COMMON_H
#define EIGEN_BLAS_COMMON_H #define EIGEN_BLAS_COMMON_H
#include <Eigen/Core>
#include <Eigen/Jacobi>
#include <iostream> #include <iostream>
#include <complex> #include <complex>
@ -68,9 +71,6 @@ inline bool check_uplo(const char* uplo)
return UPLO(*uplo)!=0xff; return UPLO(*uplo)!=0xff;
} }
#include <Eigen/Core>
#include <Eigen/Jacobi>
namespace Eigen { namespace Eigen {
#include "BandTriangularSolver.h" #include "BandTriangularSolver.h"

View File

@ -12,10 +12,11 @@ find_path(METIS_INCLUDES
${INCLUDE_INSTALL_DIR} ${INCLUDE_INSTALL_DIR}
PATH_SUFFIXES PATH_SUFFIXES
metis metis
include
) )
find_library(METIS_LIBRARIES metis PATHS $ENV{METISDIR} ${LIB_INSTALL_DIR}) find_library(METIS_LIBRARIES metis PATHS $ENV{METISDIR} ${LIB_INSTALL_DIR} PATH_SUFFIXES lib)
include(FindPackageHandleStandardArgs) include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(METIS DEFAULT_MSG find_package_handle_standard_args(METIS DEFAULT_MSG

View File

@ -51,12 +51,12 @@ class EigenMatrixPrinter:
template_params = m.split(',') template_params = m.split(',')
template_params = map(lambda x:x.replace(" ", ""), template_params) template_params = map(lambda x:x.replace(" ", ""), template_params)
if template_params[1] == '-0x00000000000000001' or template_params[1] == '-0x000000001': if template_params[1] == '-0x00000000000000001' or template_params[1] == '-0x000000001' or template_params[1] == '-1':
self.rows = val['m_storage']['m_rows'] self.rows = val['m_storage']['m_rows']
else: else:
self.rows = int(template_params[1]) self.rows = int(template_params[1])
if template_params[2] == '-0x00000000000000001' or template_params[2] == '-0x000000001': if template_params[2] == '-0x00000000000000001' or template_params[2] == '-0x000000001' or template_params[2] == '-1':
self.cols = val['m_storage']['m_cols'] self.cols = val['m_storage']['m_cols']
else: else:
self.cols = int(template_params[2]) self.cols = int(template_params[2])

View File

@ -211,7 +211,7 @@ Here is a typical usage example:
\code \code
typedef Eigen::Triplet<double> T; typedef Eigen::Triplet<double> T;
std::vector<T> tripletList; std::vector<T> tripletList;
triplets.reserve(estimation_of_entries); tripletList.reserve(estimation_of_entries);
for(...) for(...)
{ {
// ... // ...

View File

@ -0,0 +1,110 @@
namespace Eigen {
/** \page TopicSparseSystems Solving Sparse Linear Systems
In Eigen, there are several methods available to solve linear systems when the coefficient matrix is sparse. Because of the special representation of this class of matrices, special care should be taken in order to get a good performance. See \ref TutorialSparse for a detailed introduction about sparse matrices in Eigen. In this page, we briefly present the main steps that are common to all the linear solvers in Eigen together with the main concepts behind them. Depending on the properties of the matrix, the desired accuracy, the end-user is able to tune these steps in order to improve the performance of its code. However, an impatient user does not need to know deeply what's hiding behind these steps: the last section presents a benchmark routine that can be easily used to get an insight on the performance of all the available solvers.
\b Table \b of \b contents \n
- \ref TheSparseCompute
- \ref TheSparseSolve
- \ref BenchmarkRoutine
As summarized in \ref TutorialSparseDirectSolvers, there are many built-in solvers in Eigen as well as interface to external solvers libraries. All these solvers follow the same calling sequence. The basic steps are as follows :
\code
#include <Eigen/RequiredModuleName>
// ...
SparseMatrix<double> A;
// fill A
VectorXd b, x;
// fill b
// solve Ax = b
SolverClassName<SparseMatrix<double> > solver;
solver.compute(A);
if(solver.info()!=Succeeded) {
// decomposition failed
return;
}
x = solver.solve(b);
if(solver.info()!=Succeeded) {
// solving failed
return;
}
\endcode
\section TheSparseCompute The Compute Step
In the compute() function, the matrix is generally factorized: LLT for self-adjoint matrices, LDLT for general hermitian matrices and LU for non hermitian matrices. These are the results of using direct solvers. For this class of solvers precisely, the compute step is further subdivided into analyzePattern() and factorize().
The goal of analyzePattern() is to reorder the nonzero elements of the matrix, such that the factorization step creates less fill-in. This step exploits only the structure of the matrix. Hence, the results of this step can be used for other linear systems where the matrix has the same structure. Note however that sometimes, some external solvers (like SuperLU) require that the values of the matrix are set in this step, for instance to equilibrate the rows and columns of the matrix. In this situation, the results of this step can note be used with other matrices.
Eigen provides a limited set of methods to reorder the matrix in this step, either built-in (COLAMD, AMD) or external (METIS). These methods are set in template parameter list of the solver :
\code
DirectSolverClassName<SparseMatrix<double>, OrderingMethod<IndexType> > solver;
\endcode
See \link Ordering_Modules the Ordering module \endlink for the list of available methods and the associated options.
In factorize(), the factors of the coefficient matrix are computed. This step should be called each time the values of the matrix change. However, the structural pattern of the matrix should not change between multiple calls.
For iterative solvers, the compute step is used to eventually setup a preconditioner. Remember that, basically, the goal of the preconditioner is to speedup the convergence of an iterative method by solving a modified linear system where the coefficient matrix has more clustered eigenvalues. For real problems, an iterative solver should always be used with a preconditioner. In Eigen, a preconditioner is selected by simply adding it as a template parameter to the iterative solver object.
\code
IterativeSolverClassName<SparseMatrix<double>, PreconditionerName<SparseMatrix<double> > solver;
\endcode
The member function preconditioner() returns a read-write reference to the preconditioner
to directly interact with it.
For instance, with the ILUT preconditioner, the incomplete factors L and U are computed in this step.
See \link Sparse_modules the Sparse module \endlink for the list of available preconditioners in Eigen.
\section TheSparseSolve The Solve step
The solve() function computes the solution of the linear systems with one or many right hand sides.
\code
X = solver.solve(B);
\endcode
Here, B can be a vector or a matrix where the columns form the different right hand sides. The solve() function can be called several times as well, for instance When all the right hand sides are not available at once.
\code
x1 = solver.solve(b1);
// Get the second right hand side b2
x2 = solver.solve(b2);
// ...
\endcode
For direct methods, the solution are computed at the machine precision. Sometimes, the solution need not be too accurate. In this case, the iterative methods are more suitable and the desired accuracy can be set before the solve step using setTolerance(). For all the available functions, please, refer to the documentation of the \link IterativeLinearSolvers_module Iterative solvers module \endlink.
\section BenchmarkRoutine
Most of the time, all you need is to know how much time it will take to qolve your system, and hopefully, what is the most suitable solver. In Eigen, we provide a benchmark routine that can be used for this purpose. It is very easy to use. First, it should be activated at the configuration step with the flag TEST_REAL_CASES. Then, in bench/spbench, you can compile the routine by typing \b make \e spbenchsolver. You can then run it with --help option to get the list of all available options. Basically, the matrices to test should be in \link http://math.nist.gov/MatrixMarket/formats.html MatrixMarket Coordinate format \endlink, and the routine returns the statistics from all available solvers in Eigen.
The following table gives an example of XHTML statistics from several Eigen built-in and external solvers.
<TABLE border="1">
<TR><TH>Matrix <TH> N <TH> NNZ <TH> <TH > UMFPACK <TH > SUPERLU <TH > PASTIX LU <TH >BiCGSTAB <TH > BiCGSTAB+ILUT <TH >GMRES+ILUT<TH > LDLT <TH> CHOLMOD LDLT <TH > PASTIX LDLT <TH > LLT <TH > CHOLMOD SP LLT <TH > CHOLMOD LLT <TH > PASTIX LLT <TH> CG</TR>
<TR><TH rowspan="4">vector_graphics <TD rowspan="4"> 12855 <TD rowspan="4"> 72069 <TH>Compute Time <TD>0.0254549<TD>0.0215677<TD>0.0701827<TD>0.000153388<TD>0.0140107<TD>0.0153709<TD>0.0101601<TD style="background-color:red">0.00930502<TD>0.0649689
<TR><TH>Solve Time <TD>0.00337835<TD>0.000951826<TD>0.00484373<TD>0.0374886<TD>0.0046445<TD>0.00847754<TD>0.000541813<TD style="background-color:red">0.000293696<TD>0.00485376
<TR><TH>Total Time <TD>0.0288333<TD>0.0225195<TD>0.0750265<TD>0.037642<TD>0.0186552<TD>0.0238484<TD>0.0107019<TD style="background-color:red">0.00959871<TD>0.0698227
<TR><TH>Error(Iter) <TD> 1.299e-16 <TD> 2.04207e-16 <TD> 4.83393e-15 <TD> 3.94856e-11 (80) <TD> 1.03861e-12 (3) <TD> 5.81088e-14 (6) <TD> 1.97578e-16 <TD> 1.83927e-16 <TD> 4.24115e-15
<TR><TH rowspan="4">poisson_SPD <TD rowspan="4"> 19788 <TD rowspan="4"> 308232 <TH>Compute Time <TD>0.425026<TD>1.82378<TD>0.617367<TD>0.000478921<TD>1.34001<TD>1.33471<TD>0.796419<TD>0.857573<TD>0.473007<TD>0.814826<TD style="background-color:red">0.184719<TD>0.861555<TD>0.470559<TD>0.000458188
<TR><TH>Solve Time <TD>0.0280053<TD>0.0194402<TD>0.0268747<TD>0.249437<TD>0.0548444<TD>0.0926991<TD>0.00850204<TD>0.0053171<TD>0.0258932<TD>0.00874603<TD style="background-color:red">0.00578155<TD>0.00530361<TD>0.0248942<TD>0.239093
<TR><TH>Total Time <TD>0.453031<TD>1.84322<TD>0.644241<TD>0.249916<TD>1.39486<TD>1.42741<TD>0.804921<TD>0.862891<TD>0.4989<TD>0.823572<TD style="background-color:red">0.190501<TD>0.866859<TD>0.495453<TD>0.239551
<TR><TH>Error(Iter) <TD> 4.67146e-16 <TD> 1.068e-15 <TD> 1.3397e-15 <TD> 6.29233e-11 (201) <TD> 3.68527e-11 (6) <TD> 3.3168e-15 (16) <TD> 1.86376e-15 <TD> 1.31518e-16 <TD> 1.42593e-15 <TD> 3.45361e-15 <TD> 3.14575e-16 <TD> 2.21723e-15 <TD> 7.21058e-16 <TD> 9.06435e-12 (261)
<TR><TH rowspan="4">sherman2 <TD rowspan="4"> 1080 <TD rowspan="4"> 23094 <TH>Compute Time <TD style="background-color:red">0.00631754<TD>0.015052<TD>0.0247514 <TD> -<TD>0.0214425<TD>0.0217988
<TR><TH>Solve Time <TD style="background-color:red">0.000478424<TD>0.000337998<TD>0.0010291 <TD> -<TD>0.00243152<TD>0.00246152
<TR><TH>Total Time <TD style="background-color:red">0.00679597<TD>0.01539<TD>0.0257805 <TD> -<TD>0.023874<TD>0.0242603
<TR><TH>Error(Iter) <TD> 1.83099e-15 <TD> 8.19351e-15 <TD> 2.625e-14 <TD> 1.3678e+69 (1080) <TD> 4.1911e-12 (7) <TD> 5.0299e-13 (12)
<TR><TH rowspan="4">bcsstk01_SPD <TD rowspan="4"> 48 <TD rowspan="4"> 400 <TH>Compute Time <TD>0.000169079<TD>0.00010789<TD>0.000572538<TD>1.425e-06<TD>9.1612e-05<TD>8.3985e-05<TD style="background-color:red">5.6489e-05<TD>7.0913e-05<TD>0.000468251<TD>5.7389e-05<TD>8.0212e-05<TD>5.8394e-05<TD>0.000463017<TD>1.333e-06
<TR><TH>Solve Time <TD>1.2288e-05<TD>1.1124e-05<TD>0.000286387<TD>8.5896e-05<TD>1.6381e-05<TD>1.6984e-05<TD style="background-color:red">3.095e-06<TD>4.115e-06<TD>0.000325438<TD>3.504e-06<TD>7.369e-06<TD>3.454e-06<TD>0.000294095<TD>6.0516e-05
<TR><TH>Total Time <TD>0.000181367<TD>0.000119014<TD>0.000858925<TD>8.7321e-05<TD>0.000107993<TD>0.000100969<TD style="background-color:red">5.9584e-05<TD>7.5028e-05<TD>0.000793689<TD>6.0893e-05<TD>8.7581e-05<TD>6.1848e-05<TD>0.000757112<TD>6.1849e-05
<TR><TH>Error(Iter) <TD> 1.03474e-16 <TD> 2.23046e-16 <TD> 2.01273e-16 <TD> 4.87455e-07 (48) <TD> 1.03553e-16 (2) <TD> 3.55965e-16 (2) <TD> 2.48189e-16 <TD> 1.88808e-16 <TD> 1.97976e-16 <TD> 2.37248e-16 <TD> 1.82701e-16 <TD> 2.71474e-16 <TD> 2.11322e-16 <TD> 3.547e-09 (48)
<TR><TH rowspan="4">sherman1 <TD rowspan="4"> 1000 <TD rowspan="4"> 3750 <TH>Compute Time <TD>0.00228805<TD>0.00209231<TD>0.00528268<TD>9.846e-06<TD>0.00163522<TD>0.00162155<TD>0.000789259<TD style="background-color:red">0.000804495<TD>0.00438269
<TR><TH>Solve Time <TD>0.000213788<TD>9.7983e-05<TD>0.000938831<TD>0.00629835<TD>0.000361764<TD>0.00078794<TD>4.3989e-05<TD style="background-color:red">2.5331e-05<TD>0.000917166
<TR><TH>Total Time <TD>0.00250184<TD>0.00219029<TD>0.00622151<TD>0.0063082<TD>0.00199698<TD>0.00240949<TD>0.000833248<TD style="background-color:red">0.000829826<TD>0.00529986
<TR><TH>Error(Iter) <TD> 1.16839e-16 <TD> 2.25968e-16 <TD> 2.59116e-16 <TD> 3.76779e-11 (248) <TD> 4.13343e-11 (4) <TD> 2.22347e-14 (10) <TD> 2.05861e-16 <TD> 1.83555e-16 <TD> 1.02917e-15
<TR><TH rowspan="4">young1c <TD rowspan="4"> 841 <TD rowspan="4"> 4089 <TH>Compute Time <TD>0.00235843<TD style="background-color:red">0.00217228<TD>0.00568075<TD>1.2735e-05<TD>0.00264866<TD>0.00258236
<TR><TH>Solve Time <TD>0.000329599<TD style="background-color:red">0.000168634<TD>0.00080118<TD>0.0534738<TD>0.00187193<TD>0.00450211
<TR><TH>Total Time <TD>0.00268803<TD style="background-color:red">0.00234091<TD>0.00648193<TD>0.0534865<TD>0.00452059<TD>0.00708447
<TR><TH>Error(Iter) <TD> 1.27029e-16 <TD> 2.81321e-16 <TD> 5.0492e-15 <TD> 8.0507e-11 (706) <TD> 3.00447e-12 (8) <TD> 1.46532e-12 (16)
<TR><TH rowspan="4">mhd1280b <TD rowspan="4"> 1280 <TD rowspan="4"> 22778 <TH>Compute Time <TD>0.00234898<TD>0.00207079<TD>0.00570918<TD>2.5976e-05<TD>0.00302563<TD>0.00298036<TD>0.00144525<TD style="background-color:red">0.000919922<TD>0.00426444
<TR><TH>Solve Time <TD>0.00103392<TD>0.000211911<TD>0.00105<TD>0.0110432<TD>0.000628287<TD>0.00392089<TD>0.000138303<TD style="background-color:red">6.2446e-05<TD>0.00097564
<TR><TH>Total Time <TD>0.0033829<TD>0.0022827<TD>0.00675918<TD>0.0110692<TD>0.00365392<TD>0.00690124<TD>0.00158355<TD style="background-color:red">0.000982368<TD>0.00524008
<TR><TH>Error(Iter) <TD> 1.32953e-16 <TD> 3.08646e-16 <TD> 6.734e-16 <TD> 8.83132e-11 (40) <TD> 1.51153e-16 (1) <TD> 6.08556e-16 (8) <TD> 1.89264e-16 <TD> 1.97477e-16 <TD> 6.68126e-09
<TR><TH rowspan="4">crashbasis <TD rowspan="4"> 160000 <TD rowspan="4"> 1750416 <TH>Compute Time <TD>3.2019<TD>5.7892<TD>15.7573<TD style="background-color:red">0.00383515<TD>3.1006<TD>3.09921
<TR><TH>Solve Time <TD>0.261915<TD>0.106225<TD>0.402141<TD style="background-color:red">1.49089<TD>0.24888<TD>0.443673
<TR><TH>Total Time <TD>3.46381<TD>5.89542<TD>16.1594<TD style="background-color:red">1.49473<TD>3.34948<TD>3.54288
<TR><TH>Error(Iter) <TD> 1.76348e-16 <TD> 4.58395e-16 <TD> 1.67982e-14 <TD> 8.64144e-11 (61) <TD> 8.5996e-12 (2) <TD> 6.04042e-14 (5)
</TABLE>
*/
}

View File

@ -205,7 +205,7 @@ ei_add_test(vectorwiseop)
ei_add_test(simplicial_cholesky) ei_add_test(simplicial_cholesky)
ei_add_test(conjugate_gradient) ei_add_test(conjugate_gradient)
ei_add_test(bicgstab) ei_add_test(bicgstab)
ei_add_test(sparselu)
if(UMFPACK_FOUND) if(UMFPACK_FOUND)
ei_add_test(umfpack_support "" "${UMFPACK_ALL_LIBS}") ei_add_test(umfpack_support "" "${UMFPACK_ALL_LIBS}")

View File

@ -168,6 +168,12 @@ template<typename MatrixType> void cwise_min_max(const MatrixType& m)
VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax( maxM1)); VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax( maxM1));
VERIFY_IS_APPROX(m1, m1.cwiseMax( minM1)); VERIFY_IS_APPROX(m1, m1.cwiseMax( minM1));
VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1).array(), (m1.array().min)( minM1));
VERIFY_IS_APPROX(m1.array(), (m1.array().min)( maxM1));
VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1).array(), (m1.array().max)( maxM1));
VERIFY_IS_APPROX(m1.array(), (m1.array().max)( minM1));
} }
template<typename MatrixTraits> void resize(const MatrixTraits& t) template<typename MatrixTraits> void resize(const MatrixTraits& t)

View File

@ -33,6 +33,8 @@ template<typename MatrixType> void diagonalmatrices(const MatrixType& m)
LeftDiagonalMatrix ldm1(v1), ldm2(v2); LeftDiagonalMatrix ldm1(v1), ldm2(v2);
RightDiagonalMatrix rdm1(rv1), rdm2(rv2); RightDiagonalMatrix rdm1(rv1), rdm2(rv2);
Scalar s1 = internal::random<Scalar>();
SquareMatrixType sq_m1 (v1.asDiagonal()); SquareMatrixType sq_m1 (v1.asDiagonal());
VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix()); VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix());
sq_m1 = v1.asDiagonal(); sq_m1 = v1.asDiagonal();
@ -76,6 +78,13 @@ template<typename MatrixType> void diagonalmatrices(const MatrixType& m)
big.block(i,j,rows,cols) = big.block(i,j,rows,cols) * rv1.asDiagonal(); big.block(i,j,rows,cols) = big.block(i,j,rows,cols) * rv1.asDiagonal();
VERIFY_IS_APPROX((big.block(i,j,rows,cols)) , m1 * rv1.asDiagonal() ); VERIFY_IS_APPROX((big.block(i,j,rows,cols)) , m1 * rv1.asDiagonal() );
// scalar multiple
VERIFY_IS_APPROX(LeftDiagonalMatrix(ldm1*s1).diagonal(), ldm1.diagonal() * s1);
VERIFY_IS_APPROX(LeftDiagonalMatrix(s1*ldm1).diagonal(), s1 * ldm1.diagonal());
VERIFY_IS_APPROX(m1 * (rdm1 * s1), (m1 * rdm1) * s1);
VERIFY_IS_APPROX(m1 * (s1 * rdm1), (m1 * rdm1) * s1);
} }
void test_diagonalmatrices() void test_diagonalmatrices()

View File

@ -158,9 +158,9 @@ inline std::string get_matrixfolder()
{ {
std::string mat_folder = TEST_REAL_CASES; std::string mat_folder = TEST_REAL_CASES;
if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value ) if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
mat_folder = mat_folder + static_cast<string>("/complex/"); mat_folder = mat_folder + static_cast<std::string>("/complex/");
else else
mat_folder = mat_folder + static_cast<string>("/real/"); mat_folder = mat_folder + static_cast<std::string>("/real/");
return mat_folder; return mat_folder;
} }
#endif #endif

43
test/sparselu.cpp Normal file
View File

@ -0,0 +1,43 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "sparse_solver.h"
#include <Eigen/SparseLU>
#include <unsupported/Eigen/SparseExtra>
template<typename T> void test_sparselu_T()
{
SparseLU<SparseMatrix<T, ColMajor>, COLAMDOrdering<int> > sparselu_colamd;
SparseLU<SparseMatrix<T, ColMajor>, AMDOrdering<int> > sparselu_amd;
check_sparse_square_solving(sparselu_colamd);
check_sparse_square_solving(sparselu_amd);
}
void test_sparselu()
{
CALL_SUBTEST_1(test_sparselu_T<float>());
CALL_SUBTEST_2(test_sparselu_T<double>());
CALL_SUBTEST_3(test_sparselu_T<std::complex<float> >());
CALL_SUBTEST_4(test_sparselu_T<std::complex<double> >());
}

View File

@ -33,6 +33,7 @@
#include "../../Eigen/Jacobi" #include "../../Eigen/Jacobi"
#include "../../Eigen/Householder" #include "../../Eigen/Householder"
#include "src/IterativeSolvers/GMRES.h" #include "src/IterativeSolvers/GMRES.h"
#include "src/IterativeSolvers/IncompleteCholesky.h"
//#include "src/IterativeSolvers/SSORPreconditioner.h" //#include "src/IterativeSolvers/SSORPreconditioner.h"
//@} //@}

View File

@ -0,0 +1,221 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
#define EIGEN_INCOMPLETE_CHOlESKY_H
#include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h"
#include <Eigen/OrderingMethods>
#include <list>
namespace Eigen {
/**
* \brief Modified Incomplete Cholesky with dual threshold
*
* References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
* Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
*
* \tparam _MatrixType The type of the sparse matrix. It should be a symmetric
* matrix. It is advised to give a row-oriented sparse matrix
* \tparam _UpLo The triangular part of the matrix to reference.
* \tparam _OrderingType
*/
template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
class IncompleteCholesky : internal::noncopyable
{
public:
typedef SparseMatrix<Scalar,ColMajor> MatrixType;
typedef _OrderingType OrderingType;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
typedef Matrix<Scalar,Dynamic,1> VectorType;
typedef Matrix<Index,Dynamic, 1> IndexType;
public:
IncompleteCholesky() {}
IncompleteCholesky(const MatrixType& matrix)
{
compute(matrix);
}
Index rows() const { return m_L.rows(); }
Index cols() const { return m_L.cols(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
return m_info;
}
/**
* \brief Computes the fill reducing permutation vector.
*/
template<typename MatrixType>
void analyzePattern(const MatrixType& mat)
{
OrderingType ord;
ord(mat, m_perm);
m_analysisIsOk = true;
}
template<typename MatrixType>
void factorize(const MatrixType& amat);
template<typename MatrixType>
void compute (const MatrixType& matrix)
{
analyzePattern(matrix);
factorize(matrix);
}
template<typename Rhs, typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
eigen_assert(m_factorizationIsOk && "factorize() should be called first");
if (m_perm.rows() == b.rows())
x = m_perm.inverse() * b;
else
x = b;
x = m_L.template triangularView<UnitLower>().solve(x);
x = m_L.adjoint().template triangularView<Upper>().solve(x);
if (m_perm.rows() == b.rows())
x = m_perm * x;
}
template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
eigen_assert(cols()==b.rows()
&& "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
}
protected:
SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC
bool m_analysisIsOk;
bool m_factorizationIsOk;
bool m_isInitialized;
ComputationInfo m_info;
PermutationType m_perm;
};
template<typename Scalar, int _UpLo, typename OrderingType>
template<typename _MatrixType>
void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
{
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
// FIXME Stability: We should probably compute the scaling factors and the shifts that are needed to ensure a succesful LLT factorization and an efficient preconditioner.
// Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
// Apply the fill-reducing permutation computed in analyzePattern()
if (m_perm.rows() == mat.rows() )
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
else
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
int n = mat.cols();
Scalar *vals = m_L.valuePtr(); //Values
Index *rowIdx = m_L.innerIndexPtr(); //Row indices
Index *colPtr = m_L.outerIndexPtr(); // Pointer to the beginning of each row
VectorType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
// Initialize firstElt;
for (int j = 0; j < n-1; j++) firstElt(j) = colPtr[j]+1;
std::vector<std::list<Index> > listCol(n); // listCol(j) is a linked list of columns to update column j
VectorType curCol(n); // Store a nonzero values in each column
VectorType irow(n); // Row indices of nonzero elements in each column
// jki version of the Cholesky factorization
for (int j=0; j < n; j++)
{
//Left-looking factorize the column j
// First, load the jth column into curCol
Scalar diag = vals[colPtr[j]]; // Lower diagonal matrix with
curCol.setZero();
irow.setLinSpaced(n,0,n-1);
for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
{
curCol(rowIdx[i]) = vals[i];
irow(rowIdx[i]) = rowIdx[i];
}
std::list<int>::iterator k;
// Browse all previous columns that will update column j
for(k = listCol[j].begin(); k != listCol[j].end(); k++)
{
int jk = firstElt(*k); // First element to use in the column
Scalar a_jk = vals[jk];
diag -= a_jk * a_jk;
jk += 1;
for (int i = jk; i < colPtr[*k]; i++)
{
curCol(rowIdx[i]) -= vals[i] * a_jk ;
}
firstElt(*k) = jk;
if (jk < colPtr[*k+1])
{
// Add this column to the updating columns list for column *k+1
listCol[rowIdx[jk]].push_back(*k);
}
}
// Select the largest p elements
// p is the original number of elements in the column (without the diagonal)
int p = colPtr[j+1] - colPtr[j] - 2 ;
internal::QuickSplit(curCol, irow, p);
if(RealScalar(diag) <= 0)
{ //FIXME We can use heuristics (Kershaw, 1978 or above reference ) to get a dynamic shift
m_info = NumericalIssue;
return;
}
RealScalar rdiag = internal::sqrt(RealScalar(diag));
Scalar scal = Scalar(1)/rdiag;
vals[colPtr[j]] = rdiag;
// Insert the largest p elements in the matrix and scale them meanwhile
int cpt = 0;
for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
{
vals[i] = curCol(cpt) * scal;
rowIdx[i] = irow(cpt);
cpt ++;
}
}
m_factorizationIsOk = true;
m_isInitialized = true;
m_info = Success;
}
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<IncompleteCholesky<_MatrixType>, Rhs>
: solve_retval_base<IncompleteCholesky<_MatrixType>, Rhs>
{
typedef IncompleteCholesky<_MatrixType> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
} // end namespace internal
} // end namespace Eigen
#endif

View File

@ -34,8 +34,8 @@ template<typename T>
void test2dHyperbolicRotation(double tol) void test2dHyperbolicRotation(double tol)
{ {
Matrix<std::complex<T>,2,2> A, B, C; Matrix<std::complex<T>,2,2> A, B, C;
T angle, ch = std::cosh(1); T angle, ch = std::cosh((T)1);
std::complex<T> ish(0, std::sinh(1)); std::complex<T> ish(0, std::sinh((T)1));
A << ch, ish, -ish, ch; A << ch, ish, -ish, ch;
MatrixPower<Matrix<std::complex<T>,2,2> > Apow(A); MatrixPower<Matrix<std::complex<T>,2,2> > Apow(A);