mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
fix m = m*m with m sparse (gug found by Frederik Heinz)
This commit is contained in:
parent
59a1ed0932
commit
20a8bb96eb
@ -171,6 +171,55 @@ class SparseProduct : ei_no_assignment_operator,
|
||||
RhsNested m_rhs;
|
||||
};
|
||||
|
||||
// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
static void ei_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
||||
|
||||
// make sure to call innerSize/outerSize since we fake the storage order.
|
||||
int rows = lhs.innerSize();
|
||||
int cols = rhs.outerSize();
|
||||
//int size = lhs.outerSize();
|
||||
ei_assert(lhs.outerSize() == rhs.innerSize());
|
||||
|
||||
// allocate a temporary buffer
|
||||
AmbiVector<Scalar> tempVector(rows);
|
||||
|
||||
// estimate the number of non zero entries
|
||||
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
|
||||
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
|
||||
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
|
||||
|
||||
res.resize(rows, cols);
|
||||
res.startFill(int(ratioRes*rows*cols));
|
||||
for (int j=0; j<cols; ++j)
|
||||
{
|
||||
// let's do a more accurate determination of the nnz ratio for the current column j of res
|
||||
//float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
|
||||
// FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
|
||||
float ratioColRes = ratioRes;
|
||||
tempVector.init(ratioColRes);
|
||||
tempVector.setZero();
|
||||
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
||||
{
|
||||
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
|
||||
tempVector.restart();
|
||||
Scalar x = rhsIt.value();
|
||||
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
|
||||
{
|
||||
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
|
||||
}
|
||||
}
|
||||
for (typename AmbiVector<Scalar>::Iterator it(tempVector); it; ++it)
|
||||
if (ResultType::Flags&RowMajorBit)
|
||||
res.fill(j,it.index()) = it.value();
|
||||
else
|
||||
res.fill(it.index(), j) = it.value();
|
||||
}
|
||||
res.endFill();
|
||||
}
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType,
|
||||
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
|
||||
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
|
||||
@ -184,58 +233,21 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
||||
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
// make sure to call innerSize/outerSize since we fake the storage order.
|
||||
int rows = lhs.innerSize();
|
||||
int cols = rhs.outerSize();
|
||||
//int size = lhs.outerSize();
|
||||
ei_assert(lhs.outerSize() == rhs.innerSize());
|
||||
|
||||
// allocate a temporary buffer
|
||||
AmbiVector<Scalar> tempVector(rows);
|
||||
|
||||
// estimate the number of non zero entries
|
||||
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
|
||||
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
|
||||
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
|
||||
|
||||
res.resize(rows, cols);
|
||||
res.startFill(int(ratioRes*rows*cols));
|
||||
for (int j=0; j<cols; ++j)
|
||||
{
|
||||
// let's do a more accurate determination of the nnz ratio for the current column j of res
|
||||
//float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
|
||||
// FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
|
||||
float ratioColRes = ratioRes;
|
||||
tempVector.init(ratioColRes);
|
||||
tempVector.setZero();
|
||||
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
||||
{
|
||||
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
|
||||
tempVector.restart();
|
||||
Scalar x = rhsIt.value();
|
||||
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
|
||||
{
|
||||
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
|
||||
}
|
||||
}
|
||||
for (typename AmbiVector<Scalar>::Iterator it(tempVector); it; ++it)
|
||||
if (ResultType::Flags&RowMajorBit)
|
||||
res.fill(j,it.index()) = it.value();
|
||||
else
|
||||
res.fill(it.index(), j) = it.value();
|
||||
}
|
||||
res.endFill();
|
||||
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
|
||||
ei_sparse_product_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res);
|
||||
res.swap(_res);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
// we need a col-major matrix to hold the result
|
||||
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
||||
SparseTemporaryType _res(res.rows(), res.cols());
|
||||
ei_sparse_product_selector<Lhs,Rhs,SparseTemporaryType,ColMajor,ColMajor,ColMajor>::run(lhs, rhs, _res);
|
||||
ei_sparse_product_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res);
|
||||
res = _res;
|
||||
}
|
||||
};
|
||||
@ -246,20 +258,21 @@ struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
// let's transpose the product to get a column x column product
|
||||
ei_sparse_product_selector<Rhs,Lhs,ResultType,ColMajor,ColMajor,ColMajor>::run(rhs, lhs, res);
|
||||
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
|
||||
ei_sparse_product_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res);
|
||||
res.swap(_res);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
// let's transpose the product to get a column x column product
|
||||
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
||||
SparseTemporaryType _res(res.cols(), res.rows());
|
||||
ei_sparse_product_selector<Rhs,Lhs,SparseTemporaryType,ColMajor,ColMajor,ColMajor>
|
||||
::run(rhs, lhs, _res);
|
||||
ei_sparse_product_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res);
|
||||
res = _res.transpose();
|
||||
}
|
||||
};
|
||||
|
@ -37,7 +37,6 @@ template<typename SparseMatrixType> void sparse_product(const SparseMatrixType&
|
||||
Scalar eps = 1e-6;
|
||||
|
||||
// test matrix-matrix product
|
||||
/*
|
||||
{
|
||||
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
|
||||
DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows);
|
||||
@ -65,8 +64,9 @@ template<typename SparseMatrixType> void sparse_product(const SparseMatrixType&
|
||||
VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose());
|
||||
VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3);
|
||||
VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose());
|
||||
|
||||
VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3);
|
||||
}
|
||||
*/
|
||||
|
||||
// test matrix - diagonal product
|
||||
{
|
||||
@ -77,46 +77,44 @@ template<typename SparseMatrixType> void sparse_product(const SparseMatrixType&
|
||||
SparseMatrixType m3(rows, rows);
|
||||
initSparse<Scalar>(density, refM2, m2);
|
||||
initSparse<Scalar>(density, refM3, m3);
|
||||
// std::cerr << "foo\n" << (m2*d1).toDense() << "\n\n" << refM2*d1 << "\n\n";
|
||||
VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1);
|
||||
VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1);
|
||||
VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2);
|
||||
// std::cerr << "foo\n" << (d1*m2.transpose()).toDense() << "\n\n" << d1 * refM2.transpose() << "\n\n";
|
||||
VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose());
|
||||
}
|
||||
|
||||
// test self adjoint products
|
||||
// {
|
||||
// DenseMatrix b = DenseMatrix::Random(rows, rows);
|
||||
// DenseMatrix x = DenseMatrix::Random(rows, rows);
|
||||
// DenseMatrix refX = DenseMatrix::Random(rows, rows);
|
||||
// DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
|
||||
// DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
|
||||
// DenseMatrix refS = DenseMatrix::Zero(rows, rows);
|
||||
// SparseMatrixType mUp(rows, rows);
|
||||
// SparseMatrixType mLo(rows, rows);
|
||||
// SparseMatrixType mS(rows, rows);
|
||||
// do {
|
||||
// initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
|
||||
// } while (refUp.isZero());
|
||||
// refLo = refUp.transpose().conjugate();
|
||||
// mLo = mUp.transpose().conjugate();
|
||||
// refS = refUp + refLo;
|
||||
// refS.diagonal() *= 0.5;
|
||||
// mS = mUp + mLo;
|
||||
// for (int k=0; k<mS.outerSize(); ++k)
|
||||
// for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
|
||||
// if (it.index() == k)
|
||||
// it.valueRef() *= 0.5;
|
||||
//
|
||||
// VERIFY_IS_APPROX(refS.adjoint(), refS);
|
||||
// VERIFY_IS_APPROX(mS.transpose().conjugate(), mS);
|
||||
// VERIFY_IS_APPROX(mS, refS);
|
||||
// VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
|
||||
// VERIFY_IS_APPROX(x=mUp.template marked<UpperTriangular|SelfAdjoint>()*b, refX=refS*b);
|
||||
// VERIFY_IS_APPROX(x=mLo.template marked<LowerTriangular|SelfAdjoint>()*b, refX=refS*b);
|
||||
// VERIFY_IS_APPROX(x=mS.template marked<SelfAdjoint>()*b, refX=refS*b);
|
||||
// }
|
||||
{
|
||||
DenseMatrix b = DenseMatrix::Random(rows, rows);
|
||||
DenseMatrix x = DenseMatrix::Random(rows, rows);
|
||||
DenseMatrix refX = DenseMatrix::Random(rows, rows);
|
||||
DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
|
||||
DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
|
||||
DenseMatrix refS = DenseMatrix::Zero(rows, rows);
|
||||
SparseMatrixType mUp(rows, rows);
|
||||
SparseMatrixType mLo(rows, rows);
|
||||
SparseMatrixType mS(rows, rows);
|
||||
do {
|
||||
initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
|
||||
} while (refUp.isZero());
|
||||
refLo = refUp.transpose().conjugate();
|
||||
mLo = mUp.transpose().conjugate();
|
||||
refS = refUp + refLo;
|
||||
refS.diagonal() *= 0.5;
|
||||
mS = mUp + mLo;
|
||||
for (int k=0; k<mS.outerSize(); ++k)
|
||||
for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
|
||||
if (it.index() == k)
|
||||
it.valueRef() *= 0.5;
|
||||
|
||||
VERIFY_IS_APPROX(refS.adjoint(), refS);
|
||||
VERIFY_IS_APPROX(mS.transpose().conjugate(), mS);
|
||||
VERIFY_IS_APPROX(mS, refS);
|
||||
VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
|
||||
VERIFY_IS_APPROX(x=mUp.template marked<UpperTriangular|SelfAdjoint>()*b, refX=refS*b);
|
||||
VERIFY_IS_APPROX(x=mLo.template marked<LowerTriangular|SelfAdjoint>()*b, refX=refS*b);
|
||||
VERIFY_IS_APPROX(x=mS.template marked<SelfAdjoint>()*b, refX=refS*b);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user