diff --git a/test/sparse.h b/test/sparse.h index 949a597fc..530ae30bc 100644 --- a/test/sparse.h +++ b/test/sparse.h @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2008 Daniel Gomez Ferro +// Copyright (C) 2008-2011 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public @@ -58,30 +58,35 @@ enum { * \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero, * and zero coefficients respectively. */ -template void +template void initSparse(double density, - Matrix& refMat, - SparseMatrix& sparseMat, + Matrix& refMat, + SparseMatrix& sparseMat, int flags = 0, std::vector* zeroCoords = 0, std::vector* nonzeroCoords = 0) { + enum { IsRowMajor = SparseMatrix::IsRowMajor }; sparseMat.setZero(); sparseMat.reserve(int(refMat.rows()*refMat.cols()*density)); - for(int j=0; j(0,1) < density) ? internal::random() : Scalar(0); if ((flags&ForceNonZeroDiag) && (i==j)) { v = internal::random()*Scalar(3.); v = v*v + Scalar(5.); } - if ((flags & MakeLowerTriangular) && j>i) + if ((flags & MakeLowerTriangular) && aj>ai) v = Scalar(0); - else if ((flags & MakeUpperTriangular) && jpush_back(Vector2i(i,j)); + nonzeroCoords->push_back(Vector2i(ai,aj)); } else if (zeroCoords) { - zeroCoords->push_back(Vector2i(i,j)); + zeroCoords->push_back(Vector2i(ai,aj)); } - refMat(i,j) = v; + refMat(ai,aj) = v; } } sparseMat.finalize(); } -template void +template void initSparse(double density, - Matrix& refMat, - DynamicSparseMatrix& sparseMat, + Matrix& refMat, + DynamicSparseMatrix& sparseMat, int flags = 0, std::vector* zeroCoords = 0, std::vector* nonzeroCoords = 0) { + enum { IsRowMajor = DynamicSparseMatrix::IsRowMajor }; sparseMat.setZero(); sparseMat.reserve(int(refMat.rows()*refMat.cols()*density)); - for(int j=0; j(0,1) < density) ? internal::random() : Scalar(0); if ((flags&ForceNonZeroDiag) && (i==j)) { v = internal::random()*Scalar(3.); v = v*v + Scalar(5.); } - if ((flags & MakeLowerTriangular) && j>i) + if ((flags & MakeLowerTriangular) && aj>ai) v = Scalar(0); - else if ((flags & MakeUpperTriangular) && jpush_back(Vector2i(i,j)); + nonzeroCoords->push_back(Vector2i(ai,aj)); } else if (zeroCoords) { - zeroCoords->push_back(Vector2i(i,j)); + zeroCoords->push_back(Vector2i(ai,aj)); } - refMat(i,j) = v; + refMat(ai,aj) = v; } } sparseMat.finalize(); diff --git a/test/sparse_basic.cpp b/test/sparse_basic.cpp index 9d79ca740..7910bbf8f 100644 --- a/test/sparse_basic.cpp +++ b/test/sparse_basic.cpp @@ -1,6 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // +// Copyright (C) 2008-2011 Gael Guennebaud // Copyright (C) 2008 Daniel Gomez Ferro // // Eigen is free software; you can redistribute it and/or diff --git a/test/sparse_product.cpp b/test/sparse_product.cpp index 90ec3781e..1d2183bc3 100644 --- a/test/sparse_product.cpp +++ b/test/sparse_product.cpp @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2008 Daniel Gomez Ferro +// Copyright (C) 2008-2011 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public @@ -24,11 +24,37 @@ #include "sparse.h" -template void sparse_product(const SparseMatrixType& ref) +template struct test_outer; + +template struct test_outer { + static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) { + int c = internal::random(0,m2.cols()-1); + int c1 = internal::random(0,m2.cols()-1); + VERIFY_IS_APPROX(m4=m2.col(c)*refMat2.col(c1).transpose(), refMat4=refMat2.col(c)*refMat2.col(c1).transpose()); + VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.col(c).transpose(), refMat4=refMat2.col(c1)*refMat2.col(c).transpose()); + } +}; + +template struct test_outer { + static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) { + int r = internal::random(0,m2.rows()-1); + int c1 = internal::random(0,m2.cols()-1); + VERIFY_IS_APPROX(m4=m2.row(r).transpose()*refMat2.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*refMat2.col(c1).transpose()); + VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.row(r), refMat4=refMat2.col(c1)*refMat2.row(r)); + } +}; + +// (m2,m4,refMat2,refMat4,dv1); +// VERIFY_IS_APPROX(m4=m2.innerVector(c)*dv1.transpose(), refMat4=refMat2.colVector(c)*dv1.transpose()); +// VERIFY_IS_APPROX(m4=dv1*mcm.col(c).transpose(), refMat4=dv1*refMat2.col(c).transpose()); + +template void sparse_product() { typedef typename SparseMatrixType::Index Index; - const Index rows = ref.rows(); - const Index cols = ref.cols(); + Index n = 100; + const Index rows = internal::random(1,n); + const Index cols = internal::random(1,n); + const Index depth = internal::random(1,n); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; @@ -41,25 +67,37 @@ template void sparse_product(const SparseMatrixType& // test matrix-matrix product { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); - DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows); - DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows); - DenseMatrix refMat5 = DenseMatrix::Random(rows, rows); + DenseMatrix refMat2 = DenseMatrix::Zero(rows, depth); + DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows); + DenseMatrix refMat3 = DenseMatrix::Zero(depth, cols); + DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth); + DenseMatrix refMat4 = DenseMatrix::Zero(rows, cols); + DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows); + DenseMatrix refMat5 = DenseMatrix::Random(depth, cols); + DenseMatrix refMat6 = DenseMatrix::Random(rows, rows); DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); - DenseVector dv1 = DenseVector::Random(rows); - SparseMatrixType m2(rows, rows); - SparseMatrixType m3(rows, rows); - SparseMatrixType m4(rows, rows); - initSparse(density, refMat2, m2); - initSparse(density, refMat3, m3); - initSparse(density, refMat4, m4); +// DenseVector dv1 = DenseVector::Random(rows); + SparseMatrixType m2 (rows, depth); + SparseMatrixType m2t(depth, rows); + SparseMatrixType m3 (depth, cols); + SparseMatrixType m3t(cols, depth); + SparseMatrixType m4 (rows, cols); + SparseMatrixType m4t(cols, rows); + SparseMatrixType m6(rows, rows); + initSparse(density, refMat2, m2); + initSparse(density, refMat2t, m2t); + initSparse(density, refMat3, m3); + initSparse(density, refMat3t, m3t); + initSparse(density, refMat4, m4); + initSparse(density, refMat4t, m4t); + initSparse(density, refMat6, m6); - int c = internal::random(0,rows-1); +// int c = internal::random(0,depth-1); VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); - VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); - VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); - VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); + VERIFY_IS_APPROX(m4=m2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3); + VERIFY_IS_APPROX(m4=m2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); + VERIFY_IS_APPROX(m4=m2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose()); VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1); VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1); @@ -67,24 +105,23 @@ template void sparse_product(const SparseMatrixType& // sparse * dense VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); - VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose()); - VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3); - VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); + VERIFY_IS_APPROX(dm4=m2*refMat3t.transpose(), refMat4=refMat2*refMat3t.transpose()); + VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3, refMat4=refMat2t.transpose()*refMat3); + VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3)); - VERIFY_IS_APPROX(dm4=m2.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2.transpose()*(refMat3+refMat5)*0.5); + VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5); // dense * sparse VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); - VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); - VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); - VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); + VERIFY_IS_APPROX(dm4=refMat2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose()); + VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3); + VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); // sparse * dense and dense * sparse outer product - VERIFY_IS_APPROX(m4=m2.col(c)*dv1.transpose(), refMat4=refMat2.col(c)*dv1.transpose()); - VERIFY_IS_APPROX(m4=dv1*m2.col(c).transpose(), refMat4=dv1*refMat2.col(c).transpose()); + test_outer::run(m2,m4,refMat2,refMat4); - VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3); + VERIFY_IS_APPROX(m6=m6*m6, refMat6=refMat6*refMat6); } // test matrix - diagonal product @@ -116,18 +153,19 @@ template void sparse_product(const SparseMatrixType& do { initSparse(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); } while (refUp.isZero()); - refLo = refUp.transpose().conjugate(); - mLo = mUp.transpose().conjugate(); + refLo = refUp.adjoint(); + mLo = mUp.adjoint(); refS = refUp + refLo; refS.diagonal() *= 0.5; mS = mUp + mLo; + // TODO be able to address the diagonal.... for (int k=0; k void sparse_produc void test_sparse_product() { for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( sparse_product(SparseMatrix(8, 8)) ); - CALL_SUBTEST_2( sparse_product(SparseMatrix >(16, 16)) ); - CALL_SUBTEST_1( sparse_product(SparseMatrix(33, 33)) ); - - CALL_SUBTEST_3( sparse_product(DynamicSparseMatrix(8, 8)) ); - + CALL_SUBTEST_1( (sparse_product >()) ); + CALL_SUBTEST_1( (sparse_product >()) ); + CALL_SUBTEST_2( (sparse_product, ColMajor > >()) ); + CALL_SUBTEST_2( (sparse_product, RowMajor > >()) ); + CALL_SUBTEST_3( (sparse_product >()) ); + CALL_SUBTEST_3( (sparse_product >()) ); CALL_SUBTEST_4( (sparse_product_regression_test, Matrix >()) ); } } diff --git a/test/sparse_vector.cpp b/test/sparse_vector.cpp index be85740c0..b3249915e 100644 --- a/test/sparse_vector.cpp +++ b/test/sparse_vector.cpp @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2008 Daniel Gomez Ferro +// Copyright (C) 2008-2011 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public