mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-21 17:19:36 +08:00
Adding a householder-GMRES implementation from Kolja Brix
This commit is contained in:
parent
f776c061a1
commit
22cd65ee33
@ -34,7 +34,7 @@ namespace Eigen {
|
||||
* This module aims to provide various iterative linear and non linear solver algorithms.
|
||||
* It currently provides:
|
||||
* - a constrained conjugate gradient
|
||||
*
|
||||
* - a Householder GMRES implementation
|
||||
* \code
|
||||
* #include <unsupported/Eigen/IterativeSolvers>
|
||||
* \endcode
|
||||
@ -47,6 +47,9 @@ namespace Eigen {
|
||||
#include "src/IterativeSolvers/IterationController.h"
|
||||
#include "src/IterativeSolvers/ConstrainedConjGrad.h"
|
||||
#include "src/IterativeSolvers/IncompleteLU.h"
|
||||
#include "../../Eigen/Jacobi"
|
||||
#include "../../Eigen/Householder"
|
||||
#include "src/IterativeSolvers/GMRES.h"
|
||||
//#include "src/IterativeSolvers/SSORPreconditioner.h"
|
||||
|
||||
//@}
|
||||
|
390
unsupported/Eigen/src/IterativeSolvers/GMRES.h
Normal file
390
unsupported/Eigen/src/IterativeSolvers/GMRES.h
Normal file
@ -0,0 +1,390 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2012 Kolja Brix <brix@igpm.rwth-aaachen.de>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_GMRES_H
|
||||
#define EIGEN_GMRES_H
|
||||
|
||||
namespace internal {
|
||||
|
||||
/**
|
||||
* Generalized Minimal Residual Algorithm based on the
|
||||
* Arnoldi algorithm implemented with Householder reflections.
|
||||
*
|
||||
* Parameters:
|
||||
* \param mat matrix of linear system of equations
|
||||
* \param Rhs right hand side vector of linear system of equations
|
||||
* \param x on input: initial guess, on output: solution
|
||||
* \param precond preconditioner used
|
||||
* \param iters on input: maximum number of iterations to perform
|
||||
* on output: number of iterations performed
|
||||
* \param restart number of iterations for a restart
|
||||
* \param tol_error on input: residual tolerance
|
||||
* on output: residuum achieved
|
||||
*
|
||||
* \sa IterativeMethods::bicgstab()
|
||||
*
|
||||
*
|
||||
* For references, please see:
|
||||
*
|
||||
* Saad, Y. and Schultz, M. H.
|
||||
* GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
|
||||
* SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
|
||||
*
|
||||
* Saad, Y.
|
||||
* Iterative Methods for Sparse Linear Systems.
|
||||
* Society for Industrial and Applied Mathematics, Philadelphia, 2003.
|
||||
*
|
||||
* Walker, H. F.
|
||||
* Implementations of the GMRES method.
|
||||
* Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
|
||||
*
|
||||
* Walker, H. F.
|
||||
* Implementation of the GMRES Method using Householder Transformations.
|
||||
* SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
|
||||
*
|
||||
*/
|
||||
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
||||
bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
|
||||
int &iters, const int &restart, typename Dest::RealScalar & tol_error) {
|
||||
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
|
||||
typedef typename Dest::RealScalar RealScalar;
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
typedef Matrix < RealScalar, Dynamic, 1 > RealVectorType;
|
||||
typedef Matrix < Scalar, Dynamic, 1 > VectorType;
|
||||
typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
|
||||
|
||||
RealScalar tol = tol_error;
|
||||
const int maxIters = iters;
|
||||
iters = 0;
|
||||
|
||||
const int m = mat.rows();
|
||||
|
||||
VectorType p0 = rhs - mat*x;
|
||||
VectorType r0 = precond.solve(p0);
|
||||
// RealScalar r0_sqnorm = r0.squaredNorm();
|
||||
|
||||
VectorType w = VectorType::Zero(restart + 1);
|
||||
|
||||
FMatrixType H = FMatrixType::Zero(m, restart + 1);
|
||||
VectorType tau = VectorType::Zero(restart + 1);
|
||||
std::vector < JacobiRotation < Scalar > > G(restart);
|
||||
|
||||
// generate first Householder vector
|
||||
VectorType e;
|
||||
RealScalar beta;
|
||||
r0.makeHouseholder(e, tau.coeffRef(0), beta);
|
||||
w(0)=(Scalar) beta;
|
||||
H.bottomLeftCorner(m - 1, 1) = e;
|
||||
|
||||
for (int k = 1; k <= restart; ++k) {
|
||||
|
||||
++iters;
|
||||
|
||||
VectorType v = VectorType::Unit(m, k - 1), workspace(m);
|
||||
|
||||
// apply Householder reflections H_{1} ... H_{k-1} to v
|
||||
for (int i = k - 1; i >= 0; --i) {
|
||||
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
||||
}
|
||||
|
||||
// apply matrix M to v: v = mat * v;
|
||||
VectorType t=mat*v;
|
||||
v=precond.solve(t);
|
||||
|
||||
// apply Householder reflections H_{k-1} ... H_{1} to v
|
||||
for (int i = 0; i < k; ++i) {
|
||||
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
||||
}
|
||||
|
||||
if (v.tail(m - k).norm() != 0.0) {
|
||||
|
||||
if (k <= restart) {
|
||||
|
||||
// generate new Householder vector
|
||||
VectorType e;
|
||||
RealScalar beta;
|
||||
v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
|
||||
H.col(k).tail(m - k - 1) = e;
|
||||
|
||||
// apply Householder reflection H_{k} to v
|
||||
v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if (k > 1) {
|
||||
for (int i = 0; i < k - 1; ++i) {
|
||||
// apply old Givens rotations to v
|
||||
v.applyOnTheLeft(i, i + 1, G[i].adjoint());
|
||||
}
|
||||
}
|
||||
|
||||
if (k<m && v(k) != (Scalar) 0) {
|
||||
// determine next Givens rotation
|
||||
G[k - 1].makeGivens(v(k - 1), v(k));
|
||||
|
||||
// apply Givens rotation to v and w
|
||||
v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
||||
w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
||||
|
||||
}
|
||||
|
||||
// insert coefficients into upper matrix triangle
|
||||
H.col(k - 1).head(k) = v.head(k);
|
||||
|
||||
bool stop=(k==m || abs(w(k)) < tol || iters == maxIters);
|
||||
|
||||
if (stop || k == restart) {
|
||||
|
||||
// solve upper triangular system
|
||||
VectorType y = w.head(k);
|
||||
H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
|
||||
|
||||
// use Horner-like scheme to calculate solution vector
|
||||
VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
|
||||
|
||||
// apply Householder reflection H_{k} to x_new
|
||||
x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
|
||||
|
||||
for (int i = k - 2; i >= 0; --i) {
|
||||
x_new += y(i) * VectorType::Unit(m, i);
|
||||
// apply Householder reflection H_{i} to x_new
|
||||
x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
||||
}
|
||||
|
||||
x += x_new;
|
||||
|
||||
if (stop) {
|
||||
return true;
|
||||
} else {
|
||||
k=0;
|
||||
|
||||
// reset data for a restart r0 = rhs - mat * x;
|
||||
VectorType p0=mat*x;
|
||||
VectorType p1=precond.solve(p0);
|
||||
r0 = rhs - p1;
|
||||
// r0_sqnorm = r0.squaredNorm();
|
||||
w = VectorType::Zero(restart + 1);
|
||||
H = FMatrixType::Zero(m, restart + 1);
|
||||
tau = VectorType::Zero(restart + 1);
|
||||
|
||||
// generate first Householder vector
|
||||
RealScalar beta;
|
||||
r0.makeHouseholder(e, tau.coeffRef(0), beta);
|
||||
w(0)=(Scalar) beta;
|
||||
H.bottomLeftCorner(m - 1, 1) = e;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
return false;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template< typename _MatrixType,
|
||||
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
|
||||
class GMRES;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
struct traits<GMRES<_MatrixType,_Preconditioner> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
/** \ingroup IterativeLinearSolvers_Module
|
||||
* \brief A GMRES solver for sparse square problems
|
||||
*
|
||||
* This class allows to solve for A.x = b sparse linear problems using a generalized minimal
|
||||
* residual method. The vectors x and b can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
|
||||
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
|
||||
*
|
||||
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
|
||||
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
|
||||
* and NumTraits<Scalar>::epsilon() for the tolerance.
|
||||
*
|
||||
* This class can be used as the direct solver classes. Here is a typical usage example:
|
||||
* \code
|
||||
* int n = 10000;
|
||||
* VectorXd x(n), b(n);
|
||||
* SparseMatrix<double> A(n,n);
|
||||
* // fill A and b
|
||||
* GMRES<SparseMatrix<double> > solver(A);
|
||||
* x = solver.solve(b);
|
||||
* std::cout << "#iterations: " << solver.iterations() << std::endl;
|
||||
* std::cout << "estimated error: " << solver.error() << std::endl;
|
||||
* // update b, and solve again
|
||||
* x = solver.solve(b);
|
||||
* \endcode
|
||||
*
|
||||
* By default the iterations start with x=0 as an initial guess of the solution.
|
||||
* One can control the start using the solveWithGuess() method. Here is a step by
|
||||
* step execution example starting with a random guess and printing the evolution
|
||||
* of the estimated error:
|
||||
* * \code
|
||||
* x = VectorXd::Random(n);
|
||||
* solver.setMaxIterations(1);
|
||||
* int i = 0;
|
||||
* do {
|
||||
* x = solver.solveWithGuess(b,x);
|
||||
* std::cout << i << " : " << solver.error() << std::endl;
|
||||
* ++i;
|
||||
* } while (solver.info()!=Success && i<100);
|
||||
* \endcode
|
||||
* Note that such a step by step excution is slightly slower.
|
||||
*
|
||||
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
|
||||
*/
|
||||
template< typename _MatrixType, typename _Preconditioner>
|
||||
class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
|
||||
{
|
||||
typedef IterativeSolverBase<GMRES> Base;
|
||||
using Base::mp_matrix;
|
||||
using Base::m_error;
|
||||
using Base::m_iterations;
|
||||
using Base::m_info;
|
||||
using Base::m_isInitialized;
|
||||
|
||||
private:
|
||||
int m_restart;
|
||||
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef _Preconditioner Preconditioner;
|
||||
|
||||
public:
|
||||
|
||||
/** Default constructor. */
|
||||
GMRES() : Base(), m_restart(30) {}
|
||||
|
||||
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
|
||||
*
|
||||
* This constructor is a shortcut for the default constructor followed
|
||||
* by a call to compute().
|
||||
*
|
||||
* \warning this class stores a reference to the matrix A as well as some
|
||||
* precomputed values that depend on it. Therefore, if \a A is changed
|
||||
* this class becomes invalid. Call compute() to update it with the new
|
||||
* matrix A, or modify a copy of A.
|
||||
*/
|
||||
GMRES(const MatrixType& A) : Base(A), m_restart(30) {}
|
||||
|
||||
~GMRES() {}
|
||||
|
||||
/** Get the number of iterations after that a restart is performed.
|
||||
*/
|
||||
int get_restart() { return m_restart; }
|
||||
|
||||
/** Set the number of iterations after that a restart is performed.
|
||||
* \param restart number of iterations for a restarti, default is 30.
|
||||
*/
|
||||
void set_restart(const int restart) { m_restart=restart; }
|
||||
|
||||
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
|
||||
* \a x0 as an initial solution.
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
template<typename Rhs,typename Guess>
|
||||
inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess>
|
||||
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "GMRES is not initialized.");
|
||||
eigen_assert(Base::rows()==b.rows()
|
||||
&& "GMRES::solve(): invalid number of rows of the right hand side matrix b");
|
||||
return internal::solve_retval_with_guess
|
||||
<GMRES, Rhs, Guess>(*this, b.derived(), x0);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solveWithGuess(const Rhs& b, Dest& x) const
|
||||
{
|
||||
bool failed = false;
|
||||
for(int j=0; j<b.cols(); ++j)
|
||||
{
|
||||
m_iterations = Base::maxIterations();
|
||||
m_error = Base::m_tolerance;
|
||||
|
||||
typename Dest::ColXpr xj(x,j);
|
||||
if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
|
||||
failed = true;
|
||||
}
|
||||
m_info = failed ? NumericalIssue
|
||||
: m_error <= Base::m_tolerance ? Success
|
||||
: NoConvergence;
|
||||
m_isInitialized = true;
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve(const Rhs& b, Dest& x) const
|
||||
{
|
||||
x.setZero();
|
||||
_solveWithGuess(b,x);
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
};
|
||||
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, typename _Preconditioner, typename Rhs>
|
||||
struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs>
|
||||
: solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs>
|
||||
{
|
||||
typedef GMRES<_MatrixType, _Preconditioner> Dec;
|
||||
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
||||
|
||||
template<typename Dest> void evalTo(Dest& dst) const
|
||||
{
|
||||
dec()._solve(rhs(),dst);
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif // EIGEN_GMRES_H
|
@ -96,4 +96,5 @@ ei_add_test(polynomialsolver " " "${GSL_LIBRARIES}" )
|
||||
ei_add_test(polynomialutils)
|
||||
ei_add_test(kronecker_product)
|
||||
ei_add_test(splines)
|
||||
ei_add_test(gmres)
|
||||
|
||||
|
48
unsupported/test/gmres.cpp
Normal file
48
unsupported/test/gmres.cpp
Normal file
@ -0,0 +1,48 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2012 Kolja Brix <brix@igpm.rwth-aaachen.de>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "../../test/sparse_solver.h"
|
||||
#include <Eigen/IterativeSolvers>
|
||||
|
||||
template<typename T> void test_gmres_T()
|
||||
{
|
||||
GMRES<SparseMatrix<T>, DiagonalPreconditioner<T> > gmres_colmajor_diag;
|
||||
GMRES<SparseMatrix<T>, IdentityPreconditioner > gmres_colmajor_I;
|
||||
GMRES<SparseMatrix<T>, IncompleteLUT<T> > gmres_colmajor_ilut;
|
||||
//GMRES<SparseMatrix<T>, SSORPreconditioner<T> > gmres_colmajor_ssor;
|
||||
|
||||
CALL_SUBTEST( check_sparse_square_solving(gmres_colmajor_diag) );
|
||||
// CALL_SUBTEST( check_sparse_square_solving(gmres_colmajor_I) );
|
||||
CALL_SUBTEST( check_sparse_square_solving(gmres_colmajor_ilut) );
|
||||
//CALL_SUBTEST( check_sparse_square_solving(gmres_colmajor_ssor) );
|
||||
}
|
||||
|
||||
void test_gmres()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1(test_gmres_T<double>());
|
||||
CALL_SUBTEST_2(test_gmres_T<std::complex<double> >());
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user