mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 03:39:01 +08:00
Refactoring of MatrixFunction: Simplify handling of fixed-size case.
This commit is contained in:
parent
fcf821b77d
commit
233540e58a
@ -40,9 +40,13 @@ struct ei_stem_function
|
|||||||
* \param[in] f an entire function; \c f(x,n) should compute the n-th derivative of f at x.
|
* \param[in] f an entire function; \c f(x,n) should compute the n-th derivative of f at x.
|
||||||
* \param[out] result pointer to the matrix in which to store the result, \f$ f(M) \f$.
|
* \param[out] result pointer to the matrix in which to store the result, \f$ f(M) \f$.
|
||||||
*
|
*
|
||||||
* Suppose that \f$ f \f$ is an entire function (that is, a function
|
* This function computes \f$ f(A) \f$ and stores the result in the
|
||||||
* on the complex plane that is everywhere complex differentiable).
|
* matrix pointed to by \p result.
|
||||||
* Then its Taylor series
|
*
|
||||||
|
* %Matrix functions are defined as follows. Suppose that \f$ f \f$
|
||||||
|
* is an entire function (that is, a function on the complex plane
|
||||||
|
* that is everywhere complex differentiable). Then its Taylor
|
||||||
|
* series
|
||||||
* \f[ f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots \f]
|
* \f[ f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots \f]
|
||||||
* converges to \f$ f(x) \f$. In this case, we can define the matrix
|
* converges to \f$ f(x) \f$. In this case, we can define the matrix
|
||||||
* function by the same series:
|
* function by the same series:
|
||||||
@ -53,6 +57,8 @@ struct ei_stem_function
|
|||||||
* "A Schur-Parlett algorithm for computing matrix functions",
|
* "A Schur-Parlett algorithm for computing matrix functions",
|
||||||
* <em>SIAM J. %Matrix Anal. Applic.</em>, <b>25</b>:464–485, 2003.
|
* <em>SIAM J. %Matrix Anal. Applic.</em>, <b>25</b>:464–485, 2003.
|
||||||
*
|
*
|
||||||
|
* The actual work is done by the MatrixFunction class.
|
||||||
|
*
|
||||||
* Example: The following program checks that
|
* Example: The following program checks that
|
||||||
* \f[ \exp \left[ \begin{array}{ccc}
|
* \f[ \exp \left[ \begin{array}{ccc}
|
||||||
* 0 & \frac14\pi & 0 \\
|
* 0 & \frac14\pi & 0 \\
|
||||||
@ -80,81 +86,107 @@ EIGEN_STRONG_INLINE void ei_matrix_function(const MatrixBase<Derived>& M,
|
|||||||
|
|
||||||
#include "MatrixFunctionAtomic.h"
|
#include "MatrixFunctionAtomic.h"
|
||||||
|
|
||||||
|
|
||||||
/** \ingroup MatrixFunctions_Module
|
/** \ingroup MatrixFunctions_Module
|
||||||
* \class MatrixFunction
|
|
||||||
* \brief Helper class for computing matrix functions.
|
* \brief Helper class for computing matrix functions.
|
||||||
*/
|
*/
|
||||||
template <typename MatrixType,
|
template <typename MatrixType, int IsComplex = NumTraits<typename ei_traits<MatrixType>::Scalar>::IsComplex>
|
||||||
int IsComplex = NumTraits<typename ei_traits<MatrixType>::Scalar>::IsComplex,
|
class MatrixFunction
|
||||||
int IsDynamic = ( (ei_traits<MatrixType>::RowsAtCompileTime == Dynamic)
|
|
||||||
&& (ei_traits<MatrixType>::RowsAtCompileTime == Dynamic) ) >
|
|
||||||
class MatrixFunction;
|
|
||||||
|
|
||||||
/* Partial specialization of MatrixFunction for real matrices */
|
|
||||||
|
|
||||||
template <typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols, int IsDynamic>
|
|
||||||
class MatrixFunction<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols>, 0, IsDynamic>
|
|
||||||
{
|
{
|
||||||
|
private:
|
||||||
|
|
||||||
|
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
||||||
|
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
|
/** \brief Constructor. Computes matrix function.
|
||||||
|
*
|
||||||
|
* \param[in] A argument of matrix function, should be a square matrix.
|
||||||
|
* \param[in] f an entire function; \c f(x,n) should compute the n-th derivative of f at x.
|
||||||
|
* \param[out] result pointer to the matrix in which to store the result, \f$ f(A) \f$.
|
||||||
|
*
|
||||||
|
* This function computes \f$ f(A) \f$ and stores the result in
|
||||||
|
* the matrix pointed to by \p result.
|
||||||
|
*
|
||||||
|
* See ei_matrix_function() for details.
|
||||||
|
*/
|
||||||
|
MatrixFunction(const MatrixType& A, StemFunction f, MatrixType* result);
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
/** \ingroup MatrixFunctions_Module
|
||||||
|
* \brief Partial specialization of MatrixFunction for real matrices.
|
||||||
|
* \internal
|
||||||
|
*/
|
||||||
|
template <typename MatrixType>
|
||||||
|
class MatrixFunction<MatrixType, 0>
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
|
||||||
|
typedef ei_traits<MatrixType> Traits;
|
||||||
|
typedef typename Traits::Scalar Scalar;
|
||||||
|
static const int Rows = Traits::RowsAtCompileTime;
|
||||||
|
static const int Cols = Traits::ColsAtCompileTime;
|
||||||
|
static const int Options = MatrixType::Options;
|
||||||
|
static const int MaxRows = Traits::MaxRowsAtCompileTime;
|
||||||
|
static const int MaxCols = Traits::MaxColsAtCompileTime;
|
||||||
|
|
||||||
typedef std::complex<Scalar> ComplexScalar;
|
typedef std::complex<Scalar> ComplexScalar;
|
||||||
typedef Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> MatrixType;
|
|
||||||
typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
|
typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
|
||||||
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
/** \brief Constructor. Computes matrix function.
|
||||||
|
*
|
||||||
|
* \param[in] A argument of matrix function, should be a square matrix.
|
||||||
|
* \param[in] f an entire function; \c f(x,n) should compute the n-th derivative of f at x.
|
||||||
|
* \param[out] result pointer to the matrix in which to store the result, \f$ f(A) \f$.
|
||||||
|
*
|
||||||
|
* This function converts the real matrix \c A to a complex matrix,
|
||||||
|
* uses MatrixFunction<MatrixType,1> and then converts the result back to
|
||||||
|
* a real matrix.
|
||||||
|
*/
|
||||||
MatrixFunction(const MatrixType& A, StemFunction f, MatrixType* result)
|
MatrixFunction(const MatrixType& A, StemFunction f, MatrixType* result)
|
||||||
{
|
{
|
||||||
ComplexMatrix CA = A.template cast<ComplexScalar>();
|
ComplexMatrix CA = A.template cast<ComplexScalar>();
|
||||||
ComplexMatrix Cresult;
|
ComplexMatrix Cresult;
|
||||||
MatrixFunction<ComplexMatrix>(CA, f, &Cresult);
|
MatrixFunction<ComplexMatrix>(CA, f, &Cresult);
|
||||||
result->resize(A.cols(), A.rows());
|
*result = Cresult.real();
|
||||||
for (int j = 0; j < A.cols(); j++)
|
|
||||||
for (int i = 0; i < A.rows(); i++)
|
|
||||||
(*result)(i,j) = std::real(Cresult(i,j));
|
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
/* Partial specialization of MatrixFunction for complex static-size matrices */
|
|
||||||
|
|
||||||
template <typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
|
|
||||||
class MatrixFunction<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols>, 1, 0>
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
|
|
||||||
typedef Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> MatrixType;
|
|
||||||
typedef Matrix<Scalar, Dynamic, Dynamic, Options, MaxRows, MaxCols> DynamicMatrix;
|
|
||||||
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
|
||||||
|
|
||||||
MatrixFunction(const MatrixType& A, StemFunction f, MatrixType* result)
|
|
||||||
{
|
|
||||||
DynamicMatrix DA = A;
|
|
||||||
DynamicMatrix Dresult;
|
|
||||||
MatrixFunction<DynamicMatrix>(DA, f, &Dresult);
|
|
||||||
*result = Dresult;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
/* Partial specialization of MatrixFunction for complex dynamic-size matrices */
|
|
||||||
|
|
||||||
|
/** \ingroup MatrixFunctions_Module
|
||||||
|
* \brief Partial specialization of MatrixFunction for complex matrices
|
||||||
|
* \internal
|
||||||
|
*/
|
||||||
template <typename MatrixType>
|
template <typename MatrixType>
|
||||||
class MatrixFunction<MatrixType, 1, 1>
|
class MatrixFunction<MatrixType, 1>
|
||||||
{
|
{
|
||||||
public:
|
private:
|
||||||
|
|
||||||
typedef ei_traits<MatrixType> Traits;
|
typedef ei_traits<MatrixType> Traits;
|
||||||
typedef typename Traits::Scalar Scalar;
|
typedef typename Traits::Scalar Scalar;
|
||||||
|
static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
|
||||||
|
static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
|
||||||
|
static const int Options = MatrixType::Options;
|
||||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||||
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
typedef typename ei_stem_function<Scalar>::type StemFunction;
|
||||||
typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType;
|
typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType;
|
||||||
typedef Matrix<int, Traits::RowsAtCompileTime, 1> IntVectorType;
|
typedef Matrix<int, Traits::RowsAtCompileTime, 1> IntVectorType;
|
||||||
typedef std::list<Scalar> listOfScalars;
|
typedef std::list<Scalar> listOfScalars;
|
||||||
typedef std::list<listOfScalars> listOfLists;
|
typedef std::list<listOfScalars> listOfLists;
|
||||||
|
typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
|
||||||
|
|
||||||
/** \brief Compute matrix function.
|
public:
|
||||||
|
|
||||||
|
/** \brief Constructor. Computes matrix function.
|
||||||
*
|
*
|
||||||
* \param A argument of matrix function.
|
* \param[in] A argument of matrix function, should be a square matrix.
|
||||||
* \param f function to compute.
|
* \param[in] f an entire function; \c f(x,n) should compute the n-th derivative of f at x.
|
||||||
* \param result pointer to the matrix in which to store the result.
|
* \param[out] result pointer to the matrix in which to store the result, \f$ f(A) \f$.
|
||||||
*/
|
*/
|
||||||
MatrixFunction(const MatrixType& A, StemFunction f, MatrixType* result);
|
MatrixFunction(const MatrixType& A, StemFunction f, MatrixType* result);
|
||||||
|
|
||||||
@ -164,22 +196,22 @@ class MatrixFunction<MatrixType, 1, 1>
|
|||||||
MatrixFunction(const MatrixFunction&);
|
MatrixFunction(const MatrixFunction&);
|
||||||
MatrixFunction& operator=(const MatrixFunction&);
|
MatrixFunction& operator=(const MatrixFunction&);
|
||||||
|
|
||||||
void separateBlocksInSchur(MatrixType& T, MatrixType& U, IntVectorType& blockSize);
|
void separateBlocksInSchur(MatrixType& T, MatrixType& U, VectorXi& blockSize);
|
||||||
void permuteSchur(const IntVectorType& permutation, MatrixType& T, MatrixType& U);
|
void permuteSchur(const IntVectorType& permutation, MatrixType& T, MatrixType& U);
|
||||||
void swapEntriesInSchur(int index, MatrixType& T, MatrixType& U);
|
void swapEntriesInSchur(int index, MatrixType& T, MatrixType& U);
|
||||||
void computeTriangular(const MatrixType& T, MatrixType& result, const IntVectorType& blockSize);
|
void computeTriangular(const MatrixType& T, MatrixType& result, const VectorXi& blockSize);
|
||||||
void computeBlockAtomic(const MatrixType& T, MatrixType& result, const IntVectorType& blockSize);
|
void computeBlockAtomic(const MatrixType& T, MatrixType& result, const VectorXi& blockSize);
|
||||||
MatrixType solveTriangularSylvester(const MatrixType& A, const MatrixType& B, const MatrixType& C);
|
DynMatrixType solveTriangularSylvester(const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C);
|
||||||
void divideInBlocks(const VectorType& v, listOfLists* result);
|
void divideInBlocks(const VectorType& v, listOfLists* result);
|
||||||
void constructPermutation(const VectorType& diag, const listOfLists& blocks,
|
void constructPermutation(const VectorType& diag, const listOfLists& blocks,
|
||||||
IntVectorType& blockSize, IntVectorType& permutation);
|
VectorXi& blockSize, IntVectorType& permutation);
|
||||||
|
|
||||||
static const RealScalar separation() { return static_cast<RealScalar>(0.01); }
|
static const RealScalar separation() { return static_cast<RealScalar>(0.01); }
|
||||||
StemFunction *m_f;
|
StemFunction *m_f;
|
||||||
};
|
};
|
||||||
|
|
||||||
template <typename MatrixType>
|
template <typename MatrixType>
|
||||||
MatrixFunction<MatrixType,1,1>::MatrixFunction(const MatrixType& A, StemFunction f, MatrixType* result) :
|
MatrixFunction<MatrixType,1>::MatrixFunction(const MatrixType& A, StemFunction f, MatrixType* result) :
|
||||||
m_f(f)
|
m_f(f)
|
||||||
{
|
{
|
||||||
if (A.rows() == 1) {
|
if (A.rows() == 1) {
|
||||||
@ -189,7 +221,7 @@ MatrixFunction<MatrixType,1,1>::MatrixFunction(const MatrixType& A, StemFunction
|
|||||||
const ComplexSchur<MatrixType> schurOfA(A);
|
const ComplexSchur<MatrixType> schurOfA(A);
|
||||||
MatrixType T = schurOfA.matrixT();
|
MatrixType T = schurOfA.matrixT();
|
||||||
MatrixType U = schurOfA.matrixU();
|
MatrixType U = schurOfA.matrixU();
|
||||||
IntVectorType blockSize, permutation;
|
VectorXi blockSize;
|
||||||
separateBlocksInSchur(T, U, blockSize);
|
separateBlocksInSchur(T, U, blockSize);
|
||||||
MatrixType fT;
|
MatrixType fT;
|
||||||
computeTriangular(T, fT, blockSize);
|
computeTriangular(T, fT, blockSize);
|
||||||
@ -198,7 +230,7 @@ MatrixFunction<MatrixType,1,1>::MatrixFunction(const MatrixType& A, StemFunction
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <typename MatrixType>
|
template <typename MatrixType>
|
||||||
void MatrixFunction<MatrixType,1,1>::separateBlocksInSchur(MatrixType& T, MatrixType& U, IntVectorType& blockSize)
|
void MatrixFunction<MatrixType,1>::separateBlocksInSchur(MatrixType& T, MatrixType& U, VectorXi& blockSize)
|
||||||
{
|
{
|
||||||
const VectorType d = T.diagonal();
|
const VectorType d = T.diagonal();
|
||||||
listOfLists blocks;
|
listOfLists blocks;
|
||||||
@ -210,7 +242,7 @@ void MatrixFunction<MatrixType,1,1>::separateBlocksInSchur(MatrixType& T, Matrix
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <typename MatrixType>
|
template <typename MatrixType>
|
||||||
void MatrixFunction<MatrixType,1,1>::permuteSchur(const IntVectorType& permutation, MatrixType& T, MatrixType& U)
|
void MatrixFunction<MatrixType,1>::permuteSchur(const IntVectorType& permutation, MatrixType& T, MatrixType& U)
|
||||||
{
|
{
|
||||||
IntVectorType p = permutation;
|
IntVectorType p = permutation;
|
||||||
for (int i = 0; i < p.rows() - 1; i++) {
|
for (int i = 0; i < p.rows() - 1; i++) {
|
||||||
@ -228,7 +260,7 @@ void MatrixFunction<MatrixType,1,1>::permuteSchur(const IntVectorType& permutati
|
|||||||
|
|
||||||
// swap T(index, index) and T(index+1, index+1)
|
// swap T(index, index) and T(index+1, index+1)
|
||||||
template <typename MatrixType>
|
template <typename MatrixType>
|
||||||
void MatrixFunction<MatrixType,1,1>::swapEntriesInSchur(int index, MatrixType& T, MatrixType& U)
|
void MatrixFunction<MatrixType,1>::swapEntriesInSchur(int index, MatrixType& T, MatrixType& U)
|
||||||
{
|
{
|
||||||
PlanarRotation<Scalar> rotation;
|
PlanarRotation<Scalar> rotation;
|
||||||
rotation.makeGivens(T(index, index+1), T(index+1, index+1) - T(index, index));
|
rotation.makeGivens(T(index, index+1), T(index+1, index+1) - T(index, index));
|
||||||
@ -238,13 +270,12 @@ void MatrixFunction<MatrixType,1,1>::swapEntriesInSchur(int index, MatrixType& T
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <typename MatrixType>
|
template <typename MatrixType>
|
||||||
void MatrixFunction<MatrixType,1,1>::computeTriangular(const MatrixType& T, MatrixType& result,
|
void MatrixFunction<MatrixType,1>::computeTriangular(const MatrixType& T, MatrixType& result, const VectorXi& blockSize)
|
||||||
const IntVectorType& blockSize)
|
|
||||||
{
|
{
|
||||||
MatrixType expT;
|
MatrixType expT;
|
||||||
ei_matrix_exponential(T, &expT);
|
ei_matrix_exponential(T, &expT);
|
||||||
computeBlockAtomic(T, result, blockSize);
|
computeBlockAtomic(T, result, blockSize);
|
||||||
IntVectorType blockStart(blockSize.rows());
|
VectorXi blockStart(blockSize.rows());
|
||||||
blockStart(0) = 0;
|
blockStart(0) = 0;
|
||||||
for (int i = 1; i < blockSize.rows(); i++) {
|
for (int i = 1; i < blockSize.rows(); i++) {
|
||||||
blockStart(i) = blockStart(i-1) + blockSize(i-1);
|
blockStart(i) = blockStart(i-1) + blockSize(i-1);
|
||||||
@ -252,9 +283,9 @@ void MatrixFunction<MatrixType,1,1>::computeTriangular(const MatrixType& T, Matr
|
|||||||
for (int diagIndex = 1; diagIndex < blockSize.rows(); diagIndex++) {
|
for (int diagIndex = 1; diagIndex < blockSize.rows(); diagIndex++) {
|
||||||
for (int blockIndex = 0; blockIndex < blockSize.rows() - diagIndex; blockIndex++) {
|
for (int blockIndex = 0; blockIndex < blockSize.rows() - diagIndex; blockIndex++) {
|
||||||
// compute (blockIndex, blockIndex+diagIndex) block
|
// compute (blockIndex, blockIndex+diagIndex) block
|
||||||
MatrixType A = T.block(blockStart(blockIndex), blockStart(blockIndex), blockSize(blockIndex), blockSize(blockIndex));
|
DynMatrixType A = T.block(blockStart(blockIndex), blockStart(blockIndex), blockSize(blockIndex), blockSize(blockIndex));
|
||||||
MatrixType B = -T.block(blockStart(blockIndex+diagIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex+diagIndex), blockSize(blockIndex+diagIndex));
|
DynMatrixType B = -T.block(blockStart(blockIndex+diagIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex+diagIndex), blockSize(blockIndex+diagIndex));
|
||||||
MatrixType C = result.block(blockStart(blockIndex), blockStart(blockIndex), blockSize(blockIndex), blockSize(blockIndex)) * T.block(blockStart(blockIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex), blockSize(blockIndex+diagIndex));
|
DynMatrixType C = result.block(blockStart(blockIndex), blockStart(blockIndex), blockSize(blockIndex), blockSize(blockIndex)) * T.block(blockStart(blockIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex), blockSize(blockIndex+diagIndex));
|
||||||
C -= T.block(blockStart(blockIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex), blockSize(blockIndex+diagIndex)) * result.block(blockStart(blockIndex+diagIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex+diagIndex), blockSize(blockIndex+diagIndex));
|
C -= T.block(blockStart(blockIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex), blockSize(blockIndex+diagIndex)) * result.block(blockStart(blockIndex+diagIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex+diagIndex), blockSize(blockIndex+diagIndex));
|
||||||
for (int k = blockIndex + 1; k < blockIndex + diagIndex; k++) {
|
for (int k = blockIndex + 1; k < blockIndex + diagIndex; k++) {
|
||||||
C += result.block(blockStart(blockIndex), blockStart(k), blockSize(blockIndex), blockSize(k)) * T.block(blockStart(k), blockStart(blockIndex+diagIndex), blockSize(k), blockSize(blockIndex+diagIndex));
|
C += result.block(blockStart(blockIndex), blockStart(k), blockSize(blockIndex), blockSize(k)) * T.block(blockStart(k), blockStart(blockIndex+diagIndex), blockSize(k), blockSize(blockIndex+diagIndex));
|
||||||
@ -289,10 +320,10 @@ void MatrixFunction<MatrixType,1,1>::computeTriangular(const MatrixType& T, Matr
|
|||||||
* order \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
|
* order \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
|
||||||
*/
|
*/
|
||||||
template <typename MatrixType>
|
template <typename MatrixType>
|
||||||
MatrixType MatrixFunction<MatrixType,1,1>::solveTriangularSylvester(
|
typename MatrixFunction<MatrixType,1>::DynMatrixType MatrixFunction<MatrixType,1>::solveTriangularSylvester(
|
||||||
const MatrixType& A,
|
const DynMatrixType& A,
|
||||||
const MatrixType& B,
|
const DynMatrixType& B,
|
||||||
const MatrixType& C)
|
const DynMatrixType& C)
|
||||||
{
|
{
|
||||||
ei_assert(A.rows() == A.cols());
|
ei_assert(A.rows() == A.cols());
|
||||||
ei_assert(A.isUpperTriangular());
|
ei_assert(A.isUpperTriangular());
|
||||||
@ -303,7 +334,7 @@ MatrixType MatrixFunction<MatrixType,1,1>::solveTriangularSylvester(
|
|||||||
|
|
||||||
int m = A.rows();
|
int m = A.rows();
|
||||||
int n = B.rows();
|
int n = B.rows();
|
||||||
MatrixType X(m, n);
|
DynMatrixType X(m, n);
|
||||||
|
|
||||||
for (int i = m - 1; i >= 0; --i) {
|
for (int i = m - 1; i >= 0; --i) {
|
||||||
for (int j = 0; j < n; ++j) {
|
for (int j = 0; j < n; ++j) {
|
||||||
@ -335,14 +366,13 @@ MatrixType MatrixFunction<MatrixType,1,1>::solveTriangularSylvester(
|
|||||||
|
|
||||||
// does not touch irrelevant parts of T
|
// does not touch irrelevant parts of T
|
||||||
template <typename MatrixType>
|
template <typename MatrixType>
|
||||||
void MatrixFunction<MatrixType,1,1>::computeBlockAtomic(const MatrixType& T, MatrixType& result,
|
void MatrixFunction<MatrixType,1>::computeBlockAtomic(const MatrixType& T, MatrixType& result, const VectorXi& blockSize)
|
||||||
const IntVectorType& blockSize)
|
|
||||||
{
|
{
|
||||||
int blockStart = 0;
|
int blockStart = 0;
|
||||||
result.resize(T.rows(), T.cols());
|
result.resize(T.rows(), T.cols());
|
||||||
result.setZero();
|
result.setZero();
|
||||||
|
MatrixFunctionAtomic<DynMatrixType> mfa(m_f);
|
||||||
for (int i = 0; i < blockSize.rows(); i++) {
|
for (int i = 0; i < blockSize.rows(); i++) {
|
||||||
MatrixFunctionAtomic<MatrixType> mfa(m_f);
|
|
||||||
result.block(blockStart, blockStart, blockSize(i), blockSize(i))
|
result.block(blockStart, blockStart, blockSize(i), blockSize(i))
|
||||||
= mfa.compute(T.block(blockStart, blockStart, blockSize(i), blockSize(i)));
|
= mfa.compute(T.block(blockStart, blockStart, blockSize(i), blockSize(i)));
|
||||||
blockStart += blockSize(i);
|
blockStart += blockSize(i);
|
||||||
@ -363,7 +393,7 @@ typename std::list<std::list<Scalar> >::iterator ei_find_in_list_of_lists(typena
|
|||||||
|
|
||||||
// Alg 4.1
|
// Alg 4.1
|
||||||
template <typename MatrixType>
|
template <typename MatrixType>
|
||||||
void MatrixFunction<MatrixType,1,1>::divideInBlocks(const VectorType& v, listOfLists* result)
|
void MatrixFunction<MatrixType,1>::divideInBlocks(const VectorType& v, listOfLists* result)
|
||||||
{
|
{
|
||||||
const int n = v.rows();
|
const int n = v.rows();
|
||||||
for (int i=0; i<n; i++) {
|
for (int i=0; i<n; i++) {
|
||||||
@ -393,8 +423,8 @@ void MatrixFunction<MatrixType,1,1>::divideInBlocks(const VectorType& v, listOfL
|
|||||||
|
|
||||||
// Construct permutation P, such that P(D) has eigenvalues clustered together
|
// Construct permutation P, such that P(D) has eigenvalues clustered together
|
||||||
template <typename MatrixType>
|
template <typename MatrixType>
|
||||||
void MatrixFunction<MatrixType,1,1>::constructPermutation(const VectorType& diag, const listOfLists& blocks,
|
void MatrixFunction<MatrixType,1>::constructPermutation(const VectorType& diag, const listOfLists& blocks,
|
||||||
IntVectorType& blockSize, IntVectorType& permutation)
|
VectorXi& blockSize, IntVectorType& permutation)
|
||||||
{
|
{
|
||||||
const int n = diag.rows();
|
const int n = diag.rows();
|
||||||
const int numBlocks = blocks.size();
|
const int numBlocks = blocks.size();
|
||||||
@ -416,7 +446,7 @@ void MatrixFunction<MatrixType,1,1>::constructPermutation(const VectorType& diag
|
|||||||
|
|
||||||
// Compute index of first entry in every block as the sum of sizes
|
// Compute index of first entry in every block as the sum of sizes
|
||||||
// of all the preceding blocks
|
// of all the preceding blocks
|
||||||
IntVectorType indexNextEntry(numBlocks);
|
VectorXi indexNextEntry(numBlocks);
|
||||||
indexNextEntry[0] = 0;
|
indexNextEntry[0] = 0;
|
||||||
for (blockIndex = 1; blockIndex < numBlocks; blockIndex++) {
|
for (blockIndex = 1; blockIndex < numBlocks; blockIndex++) {
|
||||||
indexNextEntry[blockIndex] = indexNextEntry[blockIndex-1] + blockSize[blockIndex-1];
|
indexNextEntry[blockIndex] = indexNextEntry[blockIndex-1] + blockSize[blockIndex-1];
|
||||||
|
Loading…
x
Reference in New Issue
Block a user