add the possibility to solve for sparse rhs with Cholmod

This commit is contained in:
Gael Guennebaud 2010-10-27 14:31:23 +02:00
parent 5d4ff3f99c
commit 241e5ee3e7
6 changed files with 171 additions and 17 deletions

View File

@ -44,8 +44,8 @@
*/
namespace internal {
template<typename _Scalar, int _Flags, typename _Index>
struct traits<DynamicSparseMatrix<_Scalar, _Flags, _Index> >
template<typename _Scalar, int _Options, typename _Index>
struct traits<DynamicSparseMatrix<_Scalar, _Options, _Index> >
{
typedef _Scalar Scalar;
typedef _Index Index;
@ -56,16 +56,16 @@ struct traits<DynamicSparseMatrix<_Scalar, _Flags, _Index> >
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
Flags = _Flags | NestByRefBit | LvalueBit,
Flags = _Options | NestByRefBit | LvalueBit,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = OuterRandomAccessPattern
};
};
}
template<typename _Scalar, int _Flags, typename _Index>
template<typename _Scalar, int _Options, typename _Index>
class DynamicSparseMatrix
: public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Flags, _Index> >
: public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Options, _Index> >
{
public:
EIGEN_SPARSE_PUBLIC_INTERFACE(DynamicSparseMatrix)
@ -74,6 +74,9 @@ class DynamicSparseMatrix
// EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, -=)
typedef MappedSparseMatrix<Scalar,Flags> Map;
using Base::IsRowMajor;
enum {
Options = _Options
};
protected:
@ -325,10 +328,10 @@ class DynamicSparseMatrix
EIGEN_DEPRECATED void endFill() {}
};
template<typename Scalar, int _Flags, typename _Index>
class DynamicSparseMatrix<Scalar,_Flags,_Index>::InnerIterator : public SparseVector<Scalar,_Flags>::InnerIterator
template<typename Scalar, int _Options, typename _Index>
class DynamicSparseMatrix<Scalar,_Options,_Index>::InnerIterator : public SparseVector<Scalar,_Options>::InnerIterator
{
typedef typename SparseVector<Scalar,_Flags>::InnerIterator Base;
typedef typename SparseVector<Scalar,_Options>::InnerIterator Base;
public:
InnerIterator(const DynamicSparseMatrix& mat, Index outer)
: Base(mat.m_data[outer]), m_outer(outer)

View File

@ -78,6 +78,9 @@ class SparseMatrix
typedef MappedSparseMatrix<Scalar,Flags> Map;
using Base::IsRowMajor;
typedef CompressedStorage<Scalar,Index> Storage;
enum {
Options = _Options
};
protected:
@ -436,6 +439,12 @@ class SparseMatrix
{
return Base::operator=(product);
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE SparseMatrix& operator=(const ReturnByValue<OtherDerived>& func)
{
return Base::operator=(func);
}
#endif
template<typename OtherDerived>

View File

@ -183,6 +183,13 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
this->operator=<Derived>(other);
return derived();
}
template<typename OtherDerived>
Derived& operator=(const ReturnByValue<OtherDerived>& other)
{
other.evalTo(derived());
return derived();
}
template<typename OtherDerived>

View File

@ -72,6 +72,10 @@ class SparseVector
typedef SparseMatrixBase<SparseVector> SparseBase;
enum { IsColVector = internal::traits<SparseVector>::IsColVector };
enum {
Options = _Options
};
CompressedStorage<Scalar,Index> m_data;
Index m_size;

View File

@ -26,7 +26,57 @@
#define EIGEN_CHOLMODSUPPORT_H
namespace internal {
template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval_base;
template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval;
template<typename DecompositionType, typename Rhs>
struct traits<sparse_solve_retval_base<DecompositionType, Rhs> >
{
typedef typename DecompositionType::MatrixType MatrixType;
typedef SparseMatrix<typename Rhs::Scalar, Rhs::Options, typename Rhs::Index> ReturnType;
};
template<typename _DecompositionType, typename Rhs> struct sparse_solve_retval_base
: public ReturnByValue<sparse_solve_retval_base<_DecompositionType, Rhs> >
{
typedef typename remove_all<typename Rhs::Nested>::type RhsNestedCleaned;
typedef _DecompositionType DecompositionType;
typedef ReturnByValue<sparse_solve_retval_base> Base;
typedef typename Base::Index Index;
sparse_solve_retval_base(const DecompositionType& dec, const Rhs& rhs)
: m_dec(dec), m_rhs(rhs)
{}
inline Index rows() const { return m_dec.cols(); }
inline Index cols() const { return m_rhs.cols(); }
inline const DecompositionType& dec() const { return m_dec; }
inline const RhsNestedCleaned& rhs() const { return m_rhs; }
template<typename Dest> inline void evalTo(Dest& dst) const
{
static_cast<const sparse_solve_retval<DecompositionType,Rhs>*>(this)->evalTo(dst);
}
protected:
const DecompositionType& m_dec;
const typename Rhs::Nested m_rhs;
};
#define EIGEN_MAKE_SPARSE_SOLVE_HELPERS(DecompositionType,Rhs) \
typedef typename DecompositionType::MatrixType MatrixType; \
typedef typename MatrixType::Scalar Scalar; \
typedef typename MatrixType::RealScalar RealScalar; \
typedef typename MatrixType::Index Index; \
typedef Eigen::internal::sparse_solve_retval_base<DecompositionType,Rhs> Base; \
using Base::dec; \
using Base::rhs; \
using Base::rows; \
using Base::cols; \
sparse_solve_retval(const DecompositionType& dec, const Rhs& rhs) \
: Base(dec, rhs) {}
template<typename Scalar, typename CholmodType>
void cholmod_configure_matrix(CholmodType& mat)
{
@ -94,6 +144,13 @@ cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
return res;
}
template<typename _Scalar, int _Options, typename _Index>
const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
{
cholmod_sparse res = viewAsCholmod(mat.const_cast_derived());
return res;
}
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
* The data are not copied but shared. */
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
@ -247,6 +304,20 @@ class CholmodDecomposition
return internal::solve_retval<CholmodDecomposition, Rhs>(*this, b.derived());
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::sparse_solve_retval<CholmodDecomposition, Rhs>
solve(const SparseMatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(rows()==b.rows()
&& "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
return internal::sparse_solve_retval<CholmodDecomposition, Rhs>(*this, b.derived());
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
@ -305,10 +376,30 @@ class CholmodDecomposition
{
this->m_info = NumericalIssue;
}
dest = Matrix<Scalar,Dynamic,1>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows());
// TODO optimize this copy by swapping when possible (be carreful with alignment, etc.)
dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
cholmod_free_dense(&x_cd, &m_cholmod);
}
/** \internal */
template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex>
void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
eigen_assert(size==b.rows());
// note: cs stands for Cholmod Sparse
cholmod_sparse b_cs = viewAsCholmod(b);
cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod);
if(!x_cs)
{
this->m_info = NumericalIssue;
}
// TODO optimize this copy by swapping when possible (be carreful with alignment, etc.)
dest = viewAsEigen<DestScalar,DestOptions,DestIndex>(*x_cs);
cholmod_free_sparse(&x_cs, &m_cholmod);
}
#endif // EIGEN_PARSED_BY_DOXYGEN
protected:
@ -335,6 +426,19 @@ struct solve_retval<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
}
};
template<typename _MatrixType, int _UpLo, typename Rhs>
struct sparse_solve_retval<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
: sparse_solve_retval_base<CholmodDecomposition<_MatrixType,_UpLo>, Rhs>
{
typedef CholmodDecomposition<_MatrixType,_UpLo> Dec;
EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
}
#endif // EIGEN_CHOLMODSUPPORT_H

View File

@ -40,19 +40,21 @@ template<typename Scalar> void sparse_llt(int rows, int cols)
DenseMatrix refMat2(rows, cols);
DenseVector b = DenseVector::Random(cols);
DenseVector refX(cols), x(cols);
DenseVector ref_x(cols), x(cols);
DenseMatrix B = DenseMatrix::Random(rows,cols);
DenseMatrix ref_X(rows,cols), X(rows,cols);
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0);
for(int i=0; i<rows; ++i)
m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i)));
refX = refMat2.template selfadjointView<Lower>().llt().solve(b);
ref_x = refMat2.template selfadjointView<Lower>().llt().solve(b);
if (!NumTraits<Scalar>::IsComplex)
{
x = b;
SparseLLT<SparseMatrix<Scalar> > (m2).solveInPlace(x);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default");
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT: default");
}
#ifdef EIGEN_CHOLMOD_SUPPORT
@ -62,14 +64,14 @@ template<typename Scalar> void sparse_llt(int rows, int cols)
SparseMatrix<Scalar> m3 = m2.adjoint()*m2;
DenseMatrix refMat3 = refMat2.adjoint()*refMat2;
refX = refMat3.template selfadjointView<Lower>().llt().solve(b);
ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b);
x = b;
SparseLLT<SparseMatrix<Scalar>, Cholmod>(m3).solveInPlace(x);
VERIFY((m3*x).isApprox(b,test_precision<Scalar>()) && "LLT legacy: cholmod solveInPlace");
x = SparseLLT<SparseMatrix<Scalar>, Cholmod>(m3).solve(b);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT legacy: cholmod solve");
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT legacy: cholmod solve");
}
// new API
@ -78,13 +80,38 @@ template<typename Scalar> void sparse_llt(int rows, int cols)
SparseMatrix<Scalar> m3 = m2.adjoint()*m2;
DenseMatrix refMat3 = refMat2.adjoint()*refMat2;
refX = refMat3.template selfadjointView<Lower>().llt().solve(b);
// with a single vector as the rhs
ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b);
x = CholmodDecomposition<SparseMatrix<Scalar>, Lower>(m3).solve(b);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve");
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve, single dense rhs");
x = CholmodDecomposition<SparseMatrix<Scalar>, Upper>(m3).solve(b);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve");
VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve, single dense rhs");
// with multiple rhs
ref_X = refMat3.template selfadjointView<Lower>().llt().solve(B);
X = CholmodDecomposition<SparseMatrix<Scalar>, Lower>(m3).solve(B);
VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "LLT: cholmod solve, multiple dense rhs");
X = CholmodDecomposition<SparseMatrix<Scalar>, Upper>(m3).solve(B);
VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "LLT: cholmod solve, multiple dense rhs");
// with a sparse rhs
SparseMatrix<Scalar> spB(rows,cols), spX(rows,cols);
B.diagonal().array() += 1;
spB = B.sparseView(0.5,1);
ref_X = refMat3.template selfadjointView<Lower>().llt().solve(DenseMatrix(spB));
spX = CholmodDecomposition<SparseMatrix<Scalar>, Lower>(m3).solve(spB);
VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs");
spX = CholmodDecomposition<SparseMatrix<Scalar>, Upper>(m3).solve(spB);
VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs");
}
#endif