From 24d15e086f106d3109accd3d208ff15e602d334e Mon Sep 17 00:00:00 2001 From: Alejandro Acosta Date: Fri, 28 Jul 2023 15:45:08 +0000 Subject: [PATCH] [SYCL-2020] Add test to validate SYCL in Eigen core. --- CMakeLists.txt | 92 ++++---- cmake/EigenTesting.cmake | 4 +- cmake/SyclConfigureTesting.cmake | 64 ++++++ test/CMakeLists.txt | 8 + test/sycl_basic.cpp | 382 +++++++++++++++++++++++++++++++ unsupported/test/CMakeLists.txt | 68 +----- 6 files changed, 511 insertions(+), 107 deletions(-) create mode 100644 cmake/SyclConfigureTesting.cmake create mode 100644 test/sycl_basic.cpp diff --git a/CMakeLists.txt b/CMakeLists.txt index fbcfc58c6..c16044af7 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -496,6 +496,59 @@ if(EIGEN_BUILD_DOC) add_subdirectory(doc EXCLUDE_FROM_ALL) endif() +# add SYCL +option(EIGEN_TEST_SYCL "Add Sycl support." OFF) +if(EIGEN_TEST_SYCL) + option(EIGEN_SYCL_DPCPP "Use the DPCPP Sycl implementation (DPCPP is default SYCL-Compiler)." ON) + option(EIGEN_SYCL_TRISYCL "Use the triSYCL Sycl implementation." OFF) + option(EIGEN_SYCL_ComputeCpp "Use the ComputeCPP Sycl implementation." OFF) + + # Building options + # https://developer.codeplay.com/products/computecpp/ce/2.11.0/guides/eigen-overview/options-for-building-eigen-sycl + option(EIGEN_SYCL_USE_DEFAULT_SELECTOR "Use sycl default selector to select the preferred device." OFF) + option(EIGEN_SYCL_NO_LOCAL_MEM "Build for devices without dedicated shared memory." OFF) + option(EIGEN_SYCL_LOCAL_MEM "Allow the use of local memory (enabled by default)." ON) + option(EIGEN_SYCL_LOCAL_THREAD_DIM0 "Set work group size for dimension 0." 16) + option(EIGEN_SYCL_LOCAL_THREAD_DIM1 "Set work group size for dimension 1." 16) + option(EIGEN_SYCL_ASYNC_EXECUTION "Allow asynchronous execution (enabled by default)." ON) + option(EIGEN_SYCL_DISABLE_SKINNY "Disable optimization for tall/skinny matrices." OFF) + option(EIGEN_SYCL_DISABLE_DOUBLE_BUFFER "Disable double buffer." OFF) + option(EIGEN_SYCL_DISABLE_SCALAR "Disable scalar contraction." OFF) + option(EIGEN_SYCL_DISABLE_GEMV "Disable GEMV and create a single kernel to calculate contraction instead." OFF) + + set(EIGEN_SYCL ON) + set(CMAKE_CXX_STANDARD 17) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-deprecated-declarations -Wno-shorten-64-to-32 -Wno-cast-align") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-deprecated-copy-with-user-provided-copy -Wno-unused-variable") + set (CMAKE_MODULE_PATH "${CMAKE_ROOT}/Modules" "cmake/Modules/" "${CMAKE_MODULE_PATH}") + find_package(Threads REQUIRED) + if(EIGEN_SYCL_TRISYCL) + message(STATUS "Using triSYCL") + include(FindTriSYCL) + elseif(EIGEN_SYCL_ComputeCpp) + message(STATUS "Using ComputeCPP SYCL") + include(FindComputeCpp) + set(COMPUTECPP_DRIVER_DEFAULT_VALUE OFF) + if (NOT MSVC) + set(COMPUTECPP_DRIVER_DEFAULT_VALUE ON) + endif() + option(COMPUTECPP_USE_COMPILER_DRIVER + "Use ComputeCpp driver instead of a 2 steps compilation" + ${COMPUTECPP_DRIVER_DEFAULT_VALUE} + ) + else() #Default SYCL compiler is DPCPP (EIGEN_SYCL_DPCPP) + set(DPCPP_SYCL_TARGET "spir64" CACHE STRING "Default target for Intel CPU/GPU") + message(STATUS "Using DPCPP") + find_package(DPCPP) + add_definitions(-DSYCL_COMPILER_IS_DPCPP) + endif(EIGEN_SYCL_TRISYCL) + if(EIGEN_DONT_VECTORIZE_SYCL) + message(STATUS "Disabling SYCL vectorization in tests/examples") + # When disabling SYCL vectorization, also disable Eigen default vectorization + add_definitions(-DEIGEN_DONT_VECTORIZE=1) + add_definitions(-DEIGEN_DONT_VECTORIZE_SYCL=1) + endif() +endif() cmake_dependent_option(BUILD_TESTING "Enable creation of tests." ON "PROJECT_IS_TOP_LEVEL" OFF) option(EIGEN_BUILD_TESTING "Enable creation of Eigen tests." ${BUILD_TESTING}) @@ -522,45 +575,6 @@ else() add_subdirectory(lapack EXCLUDE_FROM_ALL) endif() -# add SYCL -option(EIGEN_TEST_SYCL "Add Sycl support." OFF) -if(EIGEN_TEST_SYCL) - option(EIGEN_SYCL_DPCPP "Use the DPCPP Sycl implementation (DPCPP is default SYCL-Compiler)." ON) - option(EIGEN_SYCL_TRISYCL "Use the triSYCL Sycl implementation." OFF) - option(EIGEN_SYCL_ComputeCpp "Use the DPCPP Sycl implementation." OFF) - set(CMAKE_CXX_STANDARD 17) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-deprecated-declarations -Wno-shorten-64-to-32 -Wno-cast-align") - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-deprecated-copy-with-user-provided-copy -Wno-unused-variable") - set (CMAKE_MODULE_PATH "${CMAKE_ROOT}/Modules" "cmake/Modules/" "${CMAKE_MODULE_PATH}") - find_package(Threads REQUIRED) - if(EIGEN_SYCL_TRISYCL) - message(STATUS "Using triSYCL") - include(FindTriSYCL) - elseif(EIGEN_SYCL_ComputeCpp) - message(STATUS "Using ComputeCPP SYCL") - include(FindComputeCpp) - set(COMPUTECPP_DRIVER_DEFAULT_VALUE OFF) - if (NOT MSVC) - set(COMPUTECPP_DRIVER_DEFAULT_VALUE ON) - endif() - option(COMPUTECPP_USE_COMPILER_DRIVER - "Use ComputeCpp driver instead of a 2 steps compilation" - ${COMPUTECPP_DRIVER_DEFAULT_VALUE} - ) - else() #Default SYCL compiler is DPCPP (EIGEN_SYCL_DPCPP) - set(DPCPP_SYCL_TARGET "spir64" CACHE STRING "Defualt target for Intel CPU/GPU") - message(STATUS "Using DPCPP") - find_package(DPCPP) - add_definitions(-DSYCL_COMPILER_IS_DPCPP) - endif(EIGEN_SYCL_TRISYCL) - if(EIGEN_DONT_VECTORIZE_SYCL) - message(STATUS "Disabling SYCL vectorization in tests/examples") - # When disabling SYCL vectorization, also disable Eigen default vectorization - add_definitions(-DEIGEN_DONT_VECTORIZE=1) - add_definitions(-DEIGEN_DONT_VECTORIZE_SYCL=1) - endif() -endif() - add_subdirectory(unsupported) add_subdirectory(demos EXCLUDE_FROM_ALL) diff --git a/cmake/EigenTesting.cmake b/cmake/EigenTesting.cmake index 639790cd1..2022cf001 100644 --- a/cmake/EigenTesting.cmake +++ b/cmake/EigenTesting.cmake @@ -368,8 +368,10 @@ macro(ei_testing_print_summary) if(EIGEN_TEST_SYCL) if(EIGEN_SYCL_TRISYCL) message(STATUS "SYCL: ON (using triSYCL)") - else() + elseif(EIGEN_SYCL_ComputeCpp) message(STATUS "SYCL: ON (using computeCPP)") + elseif(EIGEN_SYCL_DPCPP) + message(STATUS "SYCL: ON (using DPCPP)") endif() else() message(STATUS "SYCL: OFF") diff --git a/cmake/SyclConfigureTesting.cmake b/cmake/SyclConfigureTesting.cmake new file mode 100644 index 000000000..d4aa42369 --- /dev/null +++ b/cmake/SyclConfigureTesting.cmake @@ -0,0 +1,64 @@ +set(CMAKE_CXX_STANDARD 17) +# Forward CMake options as preprocessor definitions +if(EIGEN_SYCL_USE_DEFAULT_SELECTOR) + add_definitions(-DEIGEN_SYCL_USE_DEFAULT_SELECTOR=${EIGEN_SYCL_USE_DEFAULT_SELECTOR}) +endif() +if(EIGEN_SYCL_NO_LOCAL_MEM) + add_definitions(-DEIGEN_SYCL_NO_LOCAL_MEM=${EIGEN_SYCL_NO_LOCAL_MEM}) +endif() +if(EIGEN_SYCL_LOCAL_MEM) + add_definitions(-DEIGEN_SYCL_LOCAL_MEM=${EIGEN_SYCL_LOCAL_MEM}) +endif() +if(EIGEN_SYCL_MAX_GLOBAL_RANGE) + add_definitions(-DEIGEN_SYCL_MAX_GLOBAL_RANGE=${EIGEN_SYCL_MAX_GLOBAL_RANGE}) +endif() +if(EIGEN_SYCL_LOCAL_THREAD_DIM0) + add_definitions(-DEIGEN_SYCL_LOCAL_THREAD_DIM0=${EIGEN_SYCL_LOCAL_THREAD_DIM0}) +endif() +if(EIGEN_SYCL_LOCAL_THREAD_DIM1) + add_definitions(-DEIGEN_SYCL_LOCAL_THREAD_DIM1=${EIGEN_SYCL_LOCAL_THREAD_DIM1}) +endif() +if(EIGEN_SYCL_REG_M) + add_definitions(-DEIGEN_SYCL_REG_M=${EIGEN_SYCL_REG_M}) +endif() +if(EIGEN_SYCL_REG_N) + add_definitions(-DEIGEN_SYCL_REG_N=${EIGEN_SYCL_REG_N}) +endif() +if(EIGEN_SYCL_ASYNC_EXECUTION) + add_definitions(-DEIGEN_SYCL_ASYNC_EXECUTION=${EIGEN_SYCL_ASYNC_EXECUTION}) +endif() +if(EIGEN_SYCL_DISABLE_SKINNY) + add_definitions(-DEIGEN_SYCL_DISABLE_SKINNY=${EIGEN_SYCL_DISABLE_SKINNY}) +endif() +if(EIGEN_SYCL_DISABLE_DOUBLE_BUFFER) + add_definitions(-DEIGEN_SYCL_DISABLE_DOUBLE_BUFFER=${EIGEN_SYCL_DISABLE_DOUBLE_BUFFER}) +endif() +if(EIGEN_SYCL_DISABLE_SCALAR) + add_definitions(-DEIGEN_SYCL_DISABLE_SCALAR=${EIGEN_SYCL_DISABLE_SCALAR}) +endif() +if(EIGEN_SYCL_DISABLE_GEMV) + add_definitions(-DEIGEN_SYCL_DISABLE_GEMV=${EIGEN_SYCL_DISABLE_GEMV}) +endif() +if(EIGEN_SYCL_DISABLE_ARM_GPU_CACHE_OPTIMISATION) + add_definitions(-DEIGEN_SYCL_DISABLE_ARM_GPU_CACHE_OPTIMISATION=${EIGEN_SYCL_DISABLE_ARM_GPU_CACHE_OPTIMISATION}) +endif() + +if(EIGEN_SYCL_ComputeCpp) + if(MSVC) + list(APPEND COMPUTECPP_USER_FLAGS -DWIN32) + else() + list(APPEND COMPUTECPP_USER_FLAGS -Wall) + endif() + # The following flags are not supported by Clang and can cause warnings + # if used with -Werror so they are removed here. + if(COMPUTECPP_USE_COMPILER_DRIVER) + set(CMAKE_CXX_COMPILER ${ComputeCpp_DEVICE_COMPILER_EXECUTABLE}) + string(REPLACE "-Wlogical-op" "" CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}) + string(REPLACE "-Wno-psabi" "" CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}) + endif() + list(APPEND COMPUTECPP_USER_FLAGS + -DEIGEN_NO_ASSERTION_CHECKING=1 + -no-serial-memop + -Xclang + -cl-mad-enable) +endif(EIGEN_SYCL_ComputeCpp) diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt index 98d1bad90..e1a056fbd 100644 --- a/test/CMakeLists.txt +++ b/test/CMakeLists.txt @@ -477,6 +477,14 @@ if (EIGEN_TEST_HIP) endif() endif() +if(EIGEN_TEST_SYCL) + set(EIGEN_SYCL ON) + include(SyclConfigureTesting) + + ei_add_test(sycl_basic) + set(EIGEN_SYCL OFF) +endif() + cmake_dependent_option(EIGEN_TEST_BUILD_DOCUMENTATION "Test building the doxygen documentation" OFF "EIGEN_BUILD_DOC" OFF) if(EIGEN_TEST_BUILD_DOCUMENTATION) add_dependencies(buildtests doc) diff --git a/test/sycl_basic.cpp b/test/sycl_basic.cpp new file mode 100644 index 000000000..06f03c4ea --- /dev/null +++ b/test/sycl_basic.cpp @@ -0,0 +1,382 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2023 +// Alejandro Acosta Codeplay Software Ltd. +// Contact: +// Copyright (C) 2015-2016 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#define EIGEN_TEST_NO_LONGDOUBLE +#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int + +#define EIGEN_USE_SYCL +#include "main.h" + +#include + +template +void run_and_verify(Operation& ope, size_t num_elements, const Input& in, Output& out) { + Output out_gpu, out_cpu; + out_gpu = out_cpu = out; + auto queue = sycl::queue{sycl::default_selector_v}; + + auto in_size_bytes = sizeof(typename Input::Scalar) * in.size(); + auto out_size_bytes = sizeof(typename Output::Scalar) * out.size(); + auto in_d = sycl::malloc_device(in.size(), queue); + auto out_d = sycl::malloc_device(out.size(), queue); + + queue.memcpy(in_d, in.data(), in_size_bytes).wait(); + queue.memcpy(out_d, out.data(), out_size_bytes).wait(); + + if constexpr (singleTask) { + queue.single_task([=]() { ope(in_d, out_d); }).wait(); + } else { + queue + .parallel_for(sycl::range{num_elements}, + [=](sycl::id<1> idx) { + auto id = idx[0]; + ope(id, in_d, out_d); + }) + .wait(); + } + + queue.memcpy(out_gpu.data(), out_d, out_size_bytes).wait(); + + sycl::free(in_d, queue); + sycl::free(out_d, queue); + + queue.throw_asynchronous(); + + // Run on CPU and compare the output + if constexpr (singleTask == 1) { + ope(in.data(), out_cpu.data()); + } else { + for (size_t i = 0; i < num_elements; ++i) { + ope(i, in.data(), out_cpu.data()); + } + } + if constexpr (verifyNan) { + VERIFY_IS_CWISE_APPROX(out_gpu, out_cpu); + } else { + VERIFY_IS_APPROX(out_gpu, out_cpu); + } +} + +template +void test_coeff_wise(size_t num_elements, const Input& in, Output& out) { + auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { + DataType x1(in + i); + DataType x2(in + i + 1); + DataType x3(in + i + 2); + Map res(out + i * DataType::MaxSizeAtCompileTime); + + res.array() += (in[0] * x1 + x2).array() * x3.array(); + }; + + run_and_verify(operation, num_elements, in, out); +} + +template +void test_complex_sqrt(size_t num_elements, const Input& in, Output& out) { + auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { + using namespace Eigen; + typedef typename DataType::Scalar ComplexType; + typedef typename DataType::Scalar::value_type ValueType; + const int num_special_inputs = 18; + + if (i == 0) { + const ValueType nan = std::numeric_limits::quiet_NaN(); + typedef Eigen::Vector SpecialInputs; + SpecialInputs special_in; + special_in.setZero(); + int idx = 0; + special_in[idx++] = ComplexType(0, 0); + special_in[idx++] = ComplexType(-0, 0); + special_in[idx++] = ComplexType(0, -0); + special_in[idx++] = ComplexType(-0, -0); + const ValueType inf = std::numeric_limits::infinity(); + special_in[idx++] = ComplexType(1.0, inf); + special_in[idx++] = ComplexType(nan, inf); + special_in[idx++] = ComplexType(1.0, -inf); + special_in[idx++] = ComplexType(nan, -inf); + special_in[idx++] = ComplexType(-inf, 1.0); + special_in[idx++] = ComplexType(inf, 1.0); + special_in[idx++] = ComplexType(-inf, -1.0); + special_in[idx++] = ComplexType(inf, -1.0); + special_in[idx++] = ComplexType(-inf, nan); + special_in[idx++] = ComplexType(inf, nan); + special_in[idx++] = ComplexType(1.0, nan); + special_in[idx++] = ComplexType(nan, 1.0); + special_in[idx++] = ComplexType(nan, -1.0); + special_in[idx++] = ComplexType(nan, nan); + + Map special_out(out); + special_out = special_in.cwiseSqrt(); + } + + DataType x1(in + i); + Map res(out + num_special_inputs + i * DataType::MaxSizeAtCompileTime); + res = x1.cwiseSqrt(); + }; + run_and_verify(operation, num_elements, in, out); +} + +template +void test_complex_operators(size_t num_elements, const Input& in, Output& out) { + auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { + using namespace Eigen; + typedef typename DataType::Scalar ComplexType; + typedef typename DataType::Scalar::value_type ValueType; + const int num_scalar_operators = 24; + const int num_vector_operators = 23; // no unary + operator. + size_t out_idx = i * (num_scalar_operators + num_vector_operators * DataType::MaxSizeAtCompileTime); + + // Scalar operators. + const ComplexType a = in[i]; + const ComplexType b = in[i + 1]; + + out[out_idx++] = +a; + out[out_idx++] = -a; + + out[out_idx++] = a + b; + out[out_idx++] = a + numext::real(b); + out[out_idx++] = numext::real(a) + b; + out[out_idx++] = a - b; + out[out_idx++] = a - numext::real(b); + out[out_idx++] = numext::real(a) - b; + out[out_idx++] = a * b; + out[out_idx++] = a * numext::real(b); + out[out_idx++] = numext::real(a) * b; + out[out_idx++] = a / b; + out[out_idx++] = a / numext::real(b); + out[out_idx++] = numext::real(a) / b; + + out[out_idx] = a; + out[out_idx++] += b; + out[out_idx] = a; + out[out_idx++] -= b; + out[out_idx] = a; + out[out_idx++] *= b; + out[out_idx] = a; + out[out_idx++] /= b; + + const ComplexType true_value = ComplexType(ValueType(1), ValueType(0)); + const ComplexType false_value = ComplexType(ValueType(0), ValueType(0)); + out[out_idx++] = (a == b ? true_value : false_value); + out[out_idx++] = (a == numext::real(b) ? true_value : false_value); + out[out_idx++] = (numext::real(a) == b ? true_value : false_value); + out[out_idx++] = (a != b ? true_value : false_value); + out[out_idx++] = (a != numext::real(b) ? true_value : false_value); + out[out_idx++] = (numext::real(a) != b ? true_value : false_value); + + // Vector versions. + DataType x1(in + i); + DataType x2(in + i + 1); + const int res_size = DataType::MaxSizeAtCompileTime * num_scalar_operators; + const int size = DataType::MaxSizeAtCompileTime; + int block_idx = 0; + + Map> res(out + out_idx, res_size); + res.segment(block_idx, size) = -x1; + block_idx += size; + + res.segment(block_idx, size) = x1 + x2; + block_idx += size; + res.segment(block_idx, size) = x1 + x2.real(); + block_idx += size; + res.segment(block_idx, size) = x1.real() + x2; + block_idx += size; + res.segment(block_idx, size) = x1 - x2; + block_idx += size; + res.segment(block_idx, size) = x1 - x2.real(); + block_idx += size; + res.segment(block_idx, size) = x1.real() - x2; + block_idx += size; + res.segment(block_idx, size) = x1.array() * x2.array(); + block_idx += size; + res.segment(block_idx, size) = x1.array() * x2.real().array(); + block_idx += size; + res.segment(block_idx, size) = x1.real().array() * x2.array(); + block_idx += size; + res.segment(block_idx, size) = x1.array() / x2.array(); + block_idx += size; + res.segment(block_idx, size) = x1.array() / x2.real().array(); + block_idx += size; + res.segment(block_idx, size) = x1.real().array() / x2.array(); + block_idx += size; + + res.segment(block_idx, size) = x1; + res.segment(block_idx, size) += x2; + block_idx += size; + res.segment(block_idx, size) = x1; + res.segment(block_idx, size) -= x2; + block_idx += size; + res.segment(block_idx, size) = x1; + res.segment(block_idx, size).array() *= x2.array(); + block_idx += size; + res.segment(block_idx, size) = x1; + res.segment(block_idx, size).array() /= x2.array(); + block_idx += size; + + const DataType true_vector = DataType::Constant(true_value); + const DataType false_vector = DataType::Constant(false_value); + res.segment(block_idx, size) = (x1 == x2 ? true_vector : false_vector); + block_idx += size; + res.segment(block_idx, size) = (x1 == x2.real() ? true_vector : false_vector); + block_idx += size; + // res.segment(block_idx, size) = (x1.real() == x2) ? true_vector : false_vector; + // block_idx += size; + res.segment(block_idx, size) = (x1 != x2 ? true_vector : false_vector); + block_idx += size; + res.segment(block_idx, size) = (x1 != x2.real() ? true_vector : false_vector); + block_idx += size; + // res.segment(block_idx, size) = (x1.real() != x2 ? true_vector : false_vector); + // block_idx += size; + }; + run_and_verify(operation, num_elements, in, out); +} + +template +void test_redux(size_t num_elements, const Input& in, Output& out) { + auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { + using namespace Eigen; + int N = 10; + DataType x1(in + i); + out[i * N + 0] = x1.minCoeff(); + out[i * N + 1] = x1.maxCoeff(); + out[i * N + 2] = x1.sum(); + out[i * N + 3] = x1.prod(); + out[i * N + 4] = x1.matrix().squaredNorm(); + out[i * N + 5] = x1.matrix().norm(); + out[i * N + 6] = x1.colwise().sum().maxCoeff(); + out[i * N + 7] = x1.rowwise().maxCoeff().sum(); + out[i * N + 8] = x1.matrix().colwise().squaredNorm().sum(); + }; + run_and_verify(operation, num_elements, in, out); +} + +template +void test_replicate(size_t num_elements, const Input& in, Output& out) { + auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { + using namespace Eigen; + DataType x1(in + i); + int step = x1.size() * 4; + int stride = 3 * step; + + typedef Map> MapType; + MapType(out + i * stride + 0 * step, x1.rows() * 2, x1.cols() * 2) = x1.replicate(2, 2); + MapType(out + i * stride + 1 * step, x1.rows() * 3, x1.cols()) = in[i] * x1.colwise().replicate(3); + MapType(out + i * stride + 2 * step, x1.rows(), x1.cols() * 3) = in[i] * x1.rowwise().replicate(3); + }; + run_and_verify(operation, num_elements, in, out); +} + +template +void test_product(size_t num_elements, const Input& in, Output& out) { + auto operation = [](size_t i, const typename DataType1::Scalar* in, typename DataType1::Scalar* out) { + using namespace Eigen; + typedef Matrix DataType3; + DataType1 x1(in + i); + DataType2 x2(in + i + 1); + Map res(out + i * DataType3::MaxSizeAtCompileTime); + res += in[i] * x1 * x2; + }; + run_and_verify(operation, num_elements, in, out); +} + +template +void test_diagonal(size_t num_elements, const Input& in, Output& out) { + auto operation = [](size_t i, const typename DataType1::Scalar* in, typename DataType1::Scalar* out) { + using namespace Eigen; + DataType1 x1(in + i); + Map res(out + i * DataType2::MaxSizeAtCompileTime); + res += x1.diagonal(); + }; + run_and_verify(operation, num_elements, in, out); +} + +template +void test_eigenvalues_direct(size_t num_elements, const Input& in, Output& out) { + auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { + using namespace Eigen; + typedef Matrix Vec; + DataType M(in + i); + Map res(out + i * Vec::MaxSizeAtCompileTime); + DataType A = M * M.adjoint(); + SelfAdjointEigenSolver eig; + eig.computeDirect(A); + res = eig.eigenvalues(); + }; + run_and_verify(operation, num_elements, in, out); +} + +template +void test_matrix_inverse(size_t num_elements, const Input& in, Output& out) { + auto operation = [](size_t i, const typename DataType::Scalar* in, typename DataType::Scalar* out) { + using namespace Eigen; + DataType M(in + i); + Map res(out + i * DataType::MaxSizeAtCompileTime); + res = M.inverse(); + }; + run_and_verify(operation, num_elements, in, out); +} + +template +void test_numeric_limits(const Input& in, Output& out) { + auto operation = [](const typename DataType::Scalar* in, typename DataType::Scalar* out) { + EIGEN_UNUSED_VARIABLE(in) + out[0] = numext::numeric_limits::epsilon(); + out[1] = (numext::numeric_limits::max)(); + out[2] = (numext::numeric_limits::min)(); + out[3] = numext::numeric_limits::infinity(); + out[4] = numext::numeric_limits::quiet_NaN(); + }; + run_and_verify(operation, 1, in, out); +} + +EIGEN_DECLARE_TEST(sycl_basic) { + Eigen::VectorXf in, out; + Eigen::VectorXcf cfin, cfout; + + constexpr size_t num_elements = 100; + constexpr size_t data_size = num_elements * 512; + in.setRandom(data_size); + out.setConstant(data_size, -1); + cfin.setRandom(data_size); + cfout.setConstant(data_size, -1); + + CALL_SUBTEST(test_coeff_wise(num_elements, in, out)); + CALL_SUBTEST(test_coeff_wise(num_elements, in, out)); + + CALL_SUBTEST(test_complex_operators(num_elements, cfin, cfout)); + CALL_SUBTEST(test_complex_sqrt(num_elements, cfin, cfout)); + + CALL_SUBTEST(test_redux(num_elements, in, out)); + CALL_SUBTEST(test_redux(num_elements, in, out)); + + CALL_SUBTEST(test_replicate(num_elements, in, out)); + CALL_SUBTEST(test_replicate(num_elements, in, out)); + + auto test_prod_mm = [&]() { test_product(num_elements, in, out); }; + auto test_prod_mv = [&]() { test_product(num_elements, in, out); }; + CALL_SUBTEST(test_prod_mm()); + CALL_SUBTEST(test_prod_mv()); + + auto test_diagonal_mv3f = [&]() { test_diagonal(num_elements, in, out); }; + auto test_diagonal_mv4f = [&]() { test_diagonal(num_elements, in, out); }; + CALL_SUBTEST(test_diagonal_mv3f()); + CALL_SUBTEST(test_diagonal_mv4f()); + + CALL_SUBTEST(test_eigenvalues_direct(num_elements, in, out)); + CALL_SUBTEST(test_eigenvalues_direct(num_elements, in, out)); + + CALL_SUBTEST(test_matrix_inverse(num_elements, in, out)); + CALL_SUBTEST(test_matrix_inverse(num_elements, in, out)); + CALL_SUBTEST(test_matrix_inverse(num_elements, in, out)); + + CALL_SUBTEST(test_numeric_limits(in, out)); +} diff --git a/unsupported/test/CMakeLists.txt b/unsupported/test/CMakeLists.txt index 2bb551866..1d40ae56c 100644 --- a/unsupported/test/CMakeLists.txt +++ b/unsupported/test/CMakeLists.txt @@ -122,73 +122,7 @@ ei_add_test(special_packetmath "-DEIGEN_FAST_MATH=1") if(EIGEN_TEST_SYCL) set(EIGEN_SYCL ON) - set(CMAKE_CXX_STANDARD 17) - # Forward CMake options as preprocessor definitions - if(EIGEN_SYCL_USE_DEFAULT_SELECTOR) - add_definitions(-DEIGEN_SYCL_USE_DEFAULT_SELECTOR=${EIGEN_SYCL_USE_DEFAULT_SELECTOR}) - endif() - if(EIGEN_SYCL_NO_LOCAL_MEM) - add_definitions(-DEIGEN_SYCL_NO_LOCAL_MEM=${EIGEN_SYCL_NO_LOCAL_MEM}) - endif() - if(EIGEN_SYCL_LOCAL_MEM) - add_definitions(-DEIGEN_SYCL_LOCAL_MEM=${EIGEN_SYCL_LOCAL_MEM}) - endif() - if(EIGEN_SYCL_MAX_GLOBAL_RANGE) - add_definitions(-DEIGEN_SYCL_MAX_GLOBAL_RANGE=${EIGEN_SYCL_MAX_GLOBAL_RANGE}) - endif() - if(EIGEN_SYCL_LOCAL_THREAD_DIM0) - add_definitions(-DEIGEN_SYCL_LOCAL_THREAD_DIM0=${EIGEN_SYCL_LOCAL_THREAD_DIM0}) - endif() - if(EIGEN_SYCL_LOCAL_THREAD_DIM1) - add_definitions(-DEIGEN_SYCL_LOCAL_THREAD_DIM1=${EIGEN_SYCL_LOCAL_THREAD_DIM1}) - endif() - if(EIGEN_SYCL_REG_M) - add_definitions(-DEIGEN_SYCL_REG_M=${EIGEN_SYCL_REG_M}) - endif() - if(EIGEN_SYCL_REG_N) - add_definitions(-DEIGEN_SYCL_REG_N=${EIGEN_SYCL_REG_N}) - endif() - if(EIGEN_SYCL_ASYNC_EXECUTION) - add_definitions(-DEIGEN_SYCL_ASYNC_EXECUTION=${EIGEN_SYCL_ASYNC_EXECUTION}) - endif() - if(EIGEN_SYCL_DISABLE_SKINNY) - add_definitions(-DEIGEN_SYCL_DISABLE_SKINNY=${EIGEN_SYCL_DISABLE_SKINNY}) - endif() - if(EIGEN_SYCL_DISABLE_DOUBLE_BUFFER) - add_definitions(-DEIGEN_SYCL_DISABLE_DOUBLE_BUFFER=${EIGEN_SYCL_DISABLE_DOUBLE_BUFFER}) - endif() - if(EIGEN_SYCL_DISABLE_RANK1) - add_definitions(-DEIGEN_SYCL_DISABLE_RANK1=${EIGEN_SYCL_DISABLE_RANK1}) - endif() - if(EIGEN_SYCL_DISABLE_SCALAR) - add_definitions(-DEIGEN_SYCL_DISABLE_SCALAR=${EIGEN_SYCL_DISABLE_SCALAR}) - endif() - if(EIGEN_SYCL_DISABLE_GEMV) - add_definitions(-DEIGEN_SYCL_DISABLE_GEMV=${EIGEN_SYCL_DISABLE_GEMV}) - endif() - if(EIGEN_SYCL_DISABLE_ARM_GPU_CACHE_OPTIMISATION) - add_definitions(-DEIGEN_SYCL_DISABLE_ARM_GPU_CACHE_OPTIMISATION=${EIGEN_SYCL_DISABLE_ARM_GPU_CACHE_OPTIMISATION}) - endif() - - if(EIGEN_SYCL_ComputeCpp) - if(MSVC) - list(APPEND COMPUTECPP_USER_FLAGS -DWIN32) - else() - list(APPEND COMPUTECPP_USER_FLAGS -Wall) - endif() - # The following flags are not supported by Clang and can cause warnings - # if used with -Werror so they are removed here. - if(COMPUTECPP_USE_COMPILER_DRIVER) - set(CMAKE_CXX_COMPILER ${ComputeCpp_DEVICE_COMPILER_EXECUTABLE}) - string(REPLACE "-Wlogical-op" "" CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}) - string(REPLACE "-Wno-psabi" "" CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}) - endif() - list(APPEND COMPUTECPP_USER_FLAGS - -DEIGEN_NO_ASSERTION_CHECKING=1 - -no-serial-memop - -Xclang - -cl-mad-enable) - endif(EIGEN_SYCL_ComputeCpp) + include(SyclConfigureTesting) ei_add_test(cxx11_tensor_sycl) ei_add_test(cxx11_tensor_image_op_sycl)