Use ReturnByValue to return result of ei_matrix_exponential() .

This commit is contained in:
Jitse Niesen 2010-02-15 19:17:25 +00:00
parent a9096b626b
commit 25019f0836
4 changed files with 159 additions and 99 deletions

View File

@ -29,74 +29,32 @@
template <typename Scalar> Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); }
#endif
/** \ingroup MatrixFunctions_Module
*
* \brief Compute the matrix exponential.
*
* \param[in] M matrix whose exponential is to be computed.
* \param[out] result pointer to the matrix in which to store the result.
*
* The matrix exponential of \f$ M \f$ is defined by
* \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
* The matrix exponential can be used to solve linear ordinary
* differential equations: the solution of \f$ y' = My \f$ with the
* initial condition \f$ y(0) = y_0 \f$ is given by
* \f$ y(t) = \exp(M) y_0 \f$.
*
* The cost of the computation is approximately \f$ 20 n^3 \f$ for
* matrices of size \f$ n \f$. The number 20 depends weakly on the
* norm of the matrix.
*
* The matrix exponential is computed using the scaling-and-squaring
* method combined with Pad&eacute; approximation. The matrix is first
* rescaled, then the exponential of the reduced matrix is computed
* approximant, and then the rescaling is undone by repeated
* squaring. The degree of the Pad&eacute; approximant is chosen such
* that the approximation error is less than the round-off
* error. However, errors may accumulate during the squaring phase.
*
* Details of the algorithm can be found in: Nicholas J. Higham, "The
* scaling and squaring method for the matrix exponential revisited,"
* <em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179&ndash;1193,
* 2005.
*
* Example: The following program checks that
* \f[ \exp \left[ \begin{array}{ccc}
* 0 & \frac14\pi & 0 \\
* -\frac14\pi & 0 & 0 \\
* 0 & 0 & 0
* \end{array} \right] = \left[ \begin{array}{ccc}
* \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
* \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
* 0 & 0 & 1
* \end{array} \right]. \f]
* This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
* the z-axis.
*
* \include MatrixExponential.cpp
* Output: \verbinclude MatrixExponential.out
*
* \note \p M has to be a matrix of \c float, \c double,
* \c complex<float> or \c complex<double> .
*/
template <typename Derived>
EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase<Derived> &M,
typename MatrixBase<Derived>::PlainMatrixType* result);
/** \ingroup MatrixFunctions_Module
* \brief Class for computing the matrix exponential.
* \tparam MatrixType type of the argument of the exponential,
* expected to be an instantiation of the Matrix class template.
*/
template <typename MatrixType>
class MatrixExponential {
public:
/** \brief Compute the matrix exponential.
*
* \param M matrix whose exponential is to be computed.
* \param result pointer to the matrix in which to store the result.
*/
MatrixExponential(const MatrixType &M, MatrixType *result);
/** \brief Constructor.
*
* The class stores a reference to \p M, so it should not be
* changed (or destroyed) before compute() is called.
*
* \param[in] M matrix whose exponential is to be computed.
*/
MatrixExponential(const MatrixType &M);
/** \brief Computes the matrix exponential.
*
* \param[out] result the matrix exponential of \p M in the constructor.
*/
template <typename ResultType>
void compute(ResultType &result);
private:
@ -109,7 +67,7 @@ class MatrixExponential {
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param A Argument of matrix exponential
* \param[in] A Argument of matrix exponential
*/
void pade3(const MatrixType &A);
@ -118,7 +76,7 @@ class MatrixExponential {
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param A Argument of matrix exponential
* \param[in] A Argument of matrix exponential
*/
void pade5(const MatrixType &A);
@ -127,7 +85,7 @@ class MatrixExponential {
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param A Argument of matrix exponential
* \param[in] A Argument of matrix exponential
*/
void pade7(const MatrixType &A);
@ -136,7 +94,7 @@ class MatrixExponential {
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param A Argument of matrix exponential
* \param[in] A Argument of matrix exponential
*/
void pade9(const MatrixType &A);
@ -145,7 +103,7 @@ class MatrixExponential {
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* \param A Argument of matrix exponential
* \param[in] A Argument of matrix exponential
*/
void pade13(const MatrixType &A);
@ -171,10 +129,10 @@ class MatrixExponential {
void computeUV(float);
typedef typename ei_traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<typename ei_traits<MatrixType>::Scalar>::Real RealScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
/** \brief Pointer to matrix whose exponential is to be computed. */
const MatrixType* m_M;
/** \brief Reference to matrix whose exponential is to be computed. */
const MatrixType& m_M;
/** \brief Even-degree terms in numerator of Pad&eacute; approximant. */
MatrixType m_U;
@ -199,8 +157,8 @@ class MatrixExponential {
};
template <typename MatrixType>
MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M, MatrixType *result) :
m_M(&M),
MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) :
m_M(M),
m_U(M.rows(),M.cols()),
m_V(M.rows(),M.cols()),
m_tmp1(M.rows(),M.cols()),
@ -208,13 +166,20 @@ MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M, MatrixType
m_Id(MatrixType::Identity(M.rows(), M.cols())),
m_squarings(0),
m_l1norm(static_cast<float>(M.cwiseAbs().colwise().sum().maxCoeff()))
{
/* empty body */
}
template <typename MatrixType>
template <typename ResultType>
void MatrixExponential<MatrixType>::compute(ResultType &result)
{
computeUV(RealScalar());
m_tmp1 = m_U + m_V; // numerator of Pade approximant
m_tmp2 = -m_U + m_V; // denominator of Pade approximant
*result = m_tmp2.partialPivLu().solve(m_tmp1);
result = m_tmp2.partialPivLu().solve(m_tmp1);
for (int i=0; i<m_squarings; i++)
*result *= *result; // undo scaling by repeated squaring
result *= result; // undo scaling by repeated squaring
}
template <typename MatrixType>
@ -286,13 +251,13 @@ template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(float)
{
if (m_l1norm < 4.258730016922831e-001) {
pade3(*m_M);
pade3(m_M);
} else if (m_l1norm < 1.880152677804762e+000) {
pade5(*m_M);
pade5(m_M);
} else {
const float maxnorm = 3.925724783138660f;
m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm)));
MatrixType A = *m_M / std::pow(Scalar(2), Scalar(static_cast<RealScalar>(m_squarings)));
MatrixType A = m_M / std::pow(Scalar(2), Scalar(static_cast<RealScalar>(m_squarings)));
pade7(A);
}
}
@ -301,27 +266,126 @@ template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(double)
{
if (m_l1norm < 1.495585217958292e-002) {
pade3(*m_M);
pade3(m_M);
} else if (m_l1norm < 2.539398330063230e-001) {
pade5(*m_M);
pade5(m_M);
} else if (m_l1norm < 9.504178996162932e-001) {
pade7(*m_M);
pade7(m_M);
} else if (m_l1norm < 2.097847961257068e+000) {
pade9(*m_M);
pade9(m_M);
} else {
const double maxnorm = 5.371920351148152;
m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm)));
MatrixType A = *m_M / std::pow(Scalar(2), Scalar(m_squarings));
MatrixType A = m_M / std::pow(Scalar(2), Scalar(m_squarings));
pade13(A);
}
}
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix exponential of some matrix (expression).
*
* \tparam Derived Type of the argument to the matrix exponential.
*
* This class holds the argument to the matrix exponential until it
* is assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* ei_matrix_exponential() and most of the time this is the only way
* it is used.
*/
template<typename Derived> struct MatrixExponentialReturnValue
: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
{
public:
/** \brief Constructor.
*
* \param[in] src %Matrix (expression) forming the argument of the
* matrix exponential.
*/
MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
/** \brief Compute the matrix exponential.
*
* \param[out] result the matrix exponential of \p src in the
* constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
const typename ei_eval<Derived>::type srcEvaluated = m_src.eval();
MatrixExponential<typename Derived::PlainMatrixType> me(srcEvaluated);
me.compute(result);
}
int rows() const { return m_src.rows(); }
int cols() const { return m_src.cols(); }
protected:
const Derived& m_src;
};
template<typename Derived>
struct ei_traits<MatrixExponentialReturnValue<Derived> >
{
typedef typename Derived::PlainMatrixType ReturnMatrixType;
};
/** \ingroup MatrixFunctions_Module
*
* \brief Compute the matrix exponential.
*
* \param[in] M matrix whose exponential is to be computed.
* \returns expression representing the matrix exponential of \p M.
*
* The matrix exponential of \f$ M \f$ is defined by
* \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
* The matrix exponential can be used to solve linear ordinary
* differential equations: the solution of \f$ y' = My \f$ with the
* initial condition \f$ y(0) = y_0 \f$ is given by
* \f$ y(t) = \exp(M) y_0 \f$.
*
* The cost of the computation is approximately \f$ 20 n^3 \f$ for
* matrices of size \f$ n \f$. The number 20 depends weakly on the
* norm of the matrix.
*
* The matrix exponential is computed using the scaling-and-squaring
* method combined with Pad&eacute; approximation. The matrix is first
* rescaled, then the exponential of the reduced matrix is computed
* approximant, and then the rescaling is undone by repeated
* squaring. The degree of the Pad&eacute; approximant is chosen such
* that the approximation error is less than the round-off
* error. However, errors may accumulate during the squaring phase.
*
* Details of the algorithm can be found in: Nicholas J. Higham, "The
* scaling and squaring method for the matrix exponential revisited,"
* <em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179&ndash;1193,
* 2005.
*
* Example: The following program checks that
* \f[ \exp \left[ \begin{array}{ccc}
* 0 & \frac14\pi & 0 \\
* -\frac14\pi & 0 & 0 \\
* 0 & 0 & 0
* \end{array} \right] = \left[ \begin{array}{ccc}
* \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
* \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
* 0 & 0 & 1
* \end{array} \right]. \f]
* This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
* the z-axis.
*
* \include MatrixExponential.cpp
* Output: \verbinclude MatrixExponential.out
*
* \note \p M has to be a matrix of \c float, \c double,
* \c complex<float> or \c complex<double> .
*/
template <typename Derived>
EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase<Derived> &M,
typename MatrixBase<Derived>::PlainMatrixType* result)
MatrixExponentialReturnValue<Derived>
ei_matrix_exponential(const MatrixBase<Derived> &M)
{
ei_assert(M.rows() == M.cols());
MatrixExponential<typename MatrixBase<Derived>::PlainMatrixType>(M, result);
return MatrixExponentialReturnValue<Derived>(M.derived());
}
#endif // EIGEN_MATRIX_EXPONENTIAL

View File

@ -12,7 +12,6 @@ int main()
0, 0, 0;
std::cout << "The matrix A is:\n" << A << "\n\n";
MatrixXd B;
ei_matrix_exponential(A, &B);
MatrixXd B = ei_matrix_exponential(A);
std::cout << "The matrix exponential of A is:\n" << B << "\n\n";
}

View File

@ -61,7 +61,7 @@ void test2dRotation(double tol)
std::cout << "test2dRotation: i = " << i << " error funm = " << relerr(C, B);
VERIFY(C.isApprox(B, static_cast<T>(tol)));
ei_matrix_exponential(angle*A, &C);
C = ei_matrix_exponential(angle*A);
std::cout << " error expm = " << relerr(C, B) << "\n";
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
@ -86,7 +86,7 @@ void test2dHyperbolicRotation(double tol)
std::cout << "test2dHyperbolicRotation: i = " << i << " error funm = " << relerr(C, B);
VERIFY(C.isApprox(B, static_cast<T>(tol)));
ei_matrix_exponential(A, &C);
C = ei_matrix_exponential(A);
std::cout << " error expm = " << relerr(C, B) << "\n";
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
@ -110,7 +110,7 @@ void testPascal(double tol)
std::cout << "testPascal: size = " << size << " error funm = " << relerr(C, B);
VERIFY(C.isApprox(B, static_cast<T>(tol)));
ei_matrix_exponential(A, &C);
C = ei_matrix_exponential(A);
std::cout << " error expm = " << relerr(C, B) << "\n";
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
@ -137,10 +137,9 @@ void randomTest(const MatrixType& m, double tol)
std::cout << "randomTest: error funm = " << relerr(identity, m2 * m3);
VERIFY(identity.isApprox(m2 * m3, static_cast<RealScalar>(tol)));
ei_matrix_exponential(m1, &m2);
ei_matrix_exponential(-m1, &m3);
std::cout << " error expm = " << relerr(identity, m2 * m3) << "\n";
VERIFY(identity.isApprox(m2 * m3, static_cast<RealScalar>(tol)));
m2 = ei_matrix_exponential(m1) * ei_matrix_exponential(-m1);
std::cout << " error expm = " << relerr(identity, m2) << "\n";
VERIFY(identity.isApprox(m2, static_cast<RealScalar>(tol)));
}
}

View File

@ -100,10 +100,9 @@ void testMatrixExponential(const MatrixType& A)
typedef std::complex<RealScalar> ComplexScalar;
for (int i = 0; i < g_repeat; i++) {
MatrixType expA1, expA2;
ei_matrix_exponential(A, &expA1);
ei_matrix_function(A, StdStemFunctions<ComplexScalar>::exp, &expA2);
VERIFY_IS_APPROX(expA1, expA2);
MatrixType expA;
ei_matrix_function(A, StdStemFunctions<ComplexScalar>::exp, &expA);
VERIFY_IS_APPROX(ei_matrix_exponential(A), expA);
}
}
@ -111,10 +110,10 @@ template<typename MatrixType>
void testHyperbolicFunctions(const MatrixType& A)
{
for (int i = 0; i < g_repeat; i++) {
MatrixType sinhA, coshA, expA;
MatrixType sinhA, coshA;
ei_matrix_sinh(A, &sinhA);
ei_matrix_cosh(A, &coshA);
ei_matrix_exponential(A, &expA);
MatrixType expA = ei_matrix_exponential(A);
VERIFY_IS_APPROX(sinhA, (expA - expA.inverse())/2);
VERIFY_IS_APPROX(coshA, (expA + expA.inverse())/2);
}
@ -136,8 +135,7 @@ void testGonioFunctions(const MatrixType& A)
for (int i = 0; i < g_repeat; i++) {
ComplexMatrix Ac = A.template cast<ComplexScalar>();
ComplexMatrix exp_iA;
ei_matrix_exponential(imagUnit * Ac, &exp_iA);
ComplexMatrix exp_iA = ei_matrix_exponential(imagUnit * Ac);
MatrixType sinA;
ei_matrix_sin(A, &sinA);