generalize our internal rank K update routine to support more general A*B product while evaluating only one triangular part and make it available via, e.g.:

R.triangularView<Lower>() += s * A * B;
This commit is contained in:
Gael Guennebaud 2010-11-10 18:58:55 +01:00
parent c810d14d4d
commit 2577ef90c0
6 changed files with 360 additions and 173 deletions

View File

@ -308,6 +308,7 @@ using std::size_t;
#include "src/Core/products/GeneralBlockPanelKernel.h"
#include "src/Core/products/GeneralMatrixVector.h"
#include "src/Core/products/GeneralMatrixMatrix.h"
#include "src/Core/products/GeneralMatrixMatrixTriangular.h"
#include "src/Core/products/SelfadjointMatrixVector.h"
#include "src/Core/products/SelfadjointMatrixMatrix.h"
#include "src/Core/products/SelfadjointProduct.h"

View File

@ -189,9 +189,9 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
inline Index innerStride() const { return m_matrix.innerStride(); }
/** \sa MatrixBase::operator+=() */
template<typename Other> TriangularView& operator+=(const Other& other) { return *this = m_matrix + other; }
template<typename Other> TriangularView& operator+=(const DenseBase<Other>& other) { return *this = m_matrix + other.derived(); }
/** \sa MatrixBase::operator-=() */
template<typename Other> TriangularView& operator-=(const Other& other) { return *this = m_matrix - other; }
template<typename Other> TriangularView& operator-=(const DenseBase<Other>& other) { return *this = m_matrix - other.derived(); }
/** \sa MatrixBase::operator*=() */
TriangularView& operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix * other; }
/** \sa MatrixBase::operator/=() */
@ -292,7 +292,6 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
(lhs.derived(),rhs.m_matrix);
}
template<int Side, typename OtherDerived>
typename internal::plain_matrix_type_column_major<OtherDerived>::type
solve(const MatrixBase<OtherDerived>& other) const;
@ -341,8 +340,51 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
else
return m_matrix.diagonal().prod();
}
// TODO simplify the following:
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE TriangularView& operator=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{
setZero();
return assignProduct(other,1);
}
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE TriangularView& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{
return assignProduct(other,1);
}
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE TriangularView& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{
return assignProduct(other,-1);
}
template<typename ProductDerived>
EIGEN_STRONG_INLINE TriangularView& operator=(const ScaledProduct<ProductDerived>& other)
{
setZero();
return assignProduct(other,other.alpha());
}
template<typename ProductDerived>
EIGEN_STRONG_INLINE TriangularView& operator+=(const ScaledProduct<ProductDerived>& other)
{
return assignProduct(other,other.alpha());
}
template<typename ProductDerived>
EIGEN_STRONG_INLINE TriangularView& operator-=(const ScaledProduct<ProductDerived>& other)
{
return assignProduct(other,-other.alpha());
}
protected:
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE TriangularView& assignProduct(const ProductBase<ProductDerived, Lhs,Rhs>& prod, const Scalar& alpha);
const MatrixTypeNested m_matrix;
};

View File

@ -0,0 +1,225 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
#define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H
namespace internal {
/**********************************************************************
* This file implements a general A * B product while
* evaluating only one triangular part of the product.
* This is more general version of self adjoint product (C += A A^T)
* as the level 3 SYRK Blas routine.
**********************************************************************/
// forward declarations (defined at the end of this file)
template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
struct tribb_kernel;
/* Optimized matrix-matrix product evaluating only one triangular half */
template <typename Index,
typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
int ResStorageOrder, int UpLo>
struct general_matrix_matrix_triangular_product;
// as usual if the result is row major => we transpose the product
template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int UpLo>
struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor,UpLo>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride,
const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resStride, ResScalar alpha)
{
general_matrix_matrix_triangular_product<Index,
RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
ColMajor, UpLo==Lower?Upper:Lower>
::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha);
}
};
template <typename Index, typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, int UpLo>
struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor,UpLo>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride,
const RhsScalar* _rhs, Index rhsStride, ResScalar* res, Index resStride, ResScalar alpha)
{
const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
typedef gebp_traits<LhsScalar,RhsScalar> Traits;
Index kc = depth; // cache block size along the K direction
Index mc = size; // cache block size along the M direction
Index nc = size; // cache block size along the N direction
computeProductBlockingSizes<LhsScalar,RhsScalar>(kc, mc, nc);
// !!! mc must be a multiple of nr:
if(mc > Traits::nr)
mc = (mc/Traits::nr)*Traits::nr;
LhsScalar* blockA = ei_aligned_stack_new(LhsScalar, kc*mc);
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
std::size_t sizeB = sizeW + kc*size;
RhsScalar* allocatedBlockB = ei_aligned_stack_new(RhsScalar, sizeB);
RhsScalar* blockB = allocatedBlockB + sizeW;
gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
gebp_kernel <LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
tribb_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs, UpLo> sybb;
for(Index k2=0; k2<depth; k2+=kc)
{
const Index actual_kc = std::min(k2+kc,depth)-k2;
// note that the actual rhs is the transpose/adjoint of mat
pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, size);
for(Index i2=0; i2<size; i2+=mc)
{
const Index actual_mc = std::min(i2+mc,size)-i2;
pack_lhs(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc);
// the selected actual_mc * size panel of res is split into three different part:
// 1 - before the diagonal => processed with gebp or skipped
// 2 - the actual_mc x actual_mc symmetric block => processed with a special kernel
// 3 - after the diagonal => processed with gebp or skipped
if (UpLo==Lower)
gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, std::min(size,i2), alpha,
-1, -1, 0, 0, allocatedBlockB);
sybb(res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha, allocatedBlockB);
if (UpLo==Upper)
{
Index j2 = i2+actual_mc;
gebp(res+resStride*j2+i2, resStride, blockA, blockB+actual_kc*j2, actual_mc, actual_kc, std::max(Index(0), size-j2), alpha,
-1, -1, 0, 0, allocatedBlockB);
}
}
}
ei_aligned_stack_delete(LhsScalar, blockA, kc*mc);
ei_aligned_stack_delete(RhsScalar, allocatedBlockB, sizeB);
}
};
// Optimized packed Block * packed Block product kernel evaluating only one given triangular part
// This kernel is built on top of the gebp kernel:
// - the current destination block is processed per panel of actual_mc x BlockSize
// where BlockSize is set to the minimal value allowing gebp to be as fast as possible
// - then, as usual, each panel is split into three parts along the diagonal,
// the sub blocks above and below the diagonal are processed as usual,
// while the triangular block overlapping the diagonal is evaluated into a
// small temporary buffer which is then accumulated into the result using a
// triangular traversal.
template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
struct tribb_kernel
{
typedef gebp_traits<LhsScalar,RhsScalar,ConjLhs,ConjRhs> Traits;
typedef typename Traits::ResScalar ResScalar;
enum {
BlockSize = EIGEN_PLAIN_ENUM_MAX(mr,nr)
};
void operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, ResScalar alpha, RhsScalar* workspace)
{
gebp_kernel<LhsScalar, RhsScalar, Index, mr, nr, ConjLhs, ConjRhs> gebp_kernel;
Matrix<ResScalar,BlockSize,BlockSize,ColMajor> buffer;
// let's process the block per panel of actual_mc x BlockSize,
// again, each is split into three parts, etc.
for (Index j=0; j<size; j+=BlockSize)
{
Index actualBlockSize = std::min<Index>(BlockSize,size - j);
const RhsScalar* actual_b = blockB+j*depth;
if(UpLo==Upper)
gebp_kernel(res+j*resStride, resStride, blockA, actual_b, j, depth, actualBlockSize, alpha,
-1, -1, 0, 0, workspace);
// selfadjoint micro block
{
Index i = j;
buffer.setZero();
// 1 - apply the kernel on the temporary buffer
gebp_kernel(buffer.data(), BlockSize, blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha,
-1, -1, 0, 0, workspace);
// 2 - triangular accumulation
for(Index j1=0; j1<actualBlockSize; ++j1)
{
ResScalar* r = res + (j+j1)*resStride + i;
for(Index i1=UpLo==Lower ? j1 : 0;
UpLo==Lower ? i1<actualBlockSize : i1<=j1; ++i1)
r[i1] += buffer(i1,j1);
}
}
if(UpLo==Lower)
{
Index i = j+actualBlockSize;
gebp_kernel(res+j*resStride+i, resStride, blockA+depth*i, actual_b, size-i, depth, actualBlockSize, alpha,
-1, -1, 0, 0, workspace);
}
}
}
};
} // end namespace internal
// high level API
template<typename MatrixType, unsigned int UpLo>
template<typename ProductDerived, typename Lhs, typename Rhs>
TriangularView<MatrixType,UpLo>& TriangularView<MatrixType,UpLo>::assignProduct(const ProductBase<ProductDerived, Lhs,Rhs>& prod, const Scalar& alpha)
{
typedef internal::blas_traits<Lhs> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs;
typedef typename internal::remove_all<ActualLhs>::type _ActualLhs;
const ActualLhs actualLhs = LhsBlasTraits::extract(prod.lhs());
typedef internal::blas_traits<Rhs> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs;
typedef typename internal::remove_all<ActualRhs>::type _ActualRhs;
const ActualRhs actualRhs = RhsBlasTraits::extract(prod.rhs());
typename ProductDerived::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived());
internal::general_matrix_matrix_triangular_product<Index,
typename Lhs::Scalar, _ActualLhs::Flags&RowMajorBit ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
typename Rhs::Scalar, _ActualRhs::Flags&RowMajorBit ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor, UpLo>
::run(m_matrix.cols(), actualLhs.cols(),
&actualLhs.coeff(0,0), actualLhs.outerStride(), &actualRhs.coeff(0,0), actualRhs.outerStride(),
const_cast<Scalar*>(m_matrix.data()), m_matrix.outerStride(), actualAlpha);
return *this;
}
#endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H

View File

@ -25,175 +25,12 @@
#ifndef EIGEN_SELFADJOINT_PRODUCT_H
#define EIGEN_SELFADJOINT_PRODUCT_H
namespace internal {
/**********************************************************************
* This file implements a self adjoint product: C += A A^T updating only
* half of the selfadjoint matrix C.
* It corresponds to the level 3 SYRK Blas routine.
**********************************************************************/
// forward declarations (defined at the end of this file)
template<typename Scalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
struct sybb_kernel;
/* Optimized selfadjoint product (_SYRK) */
template <typename Scalar, typename Index,
int RhsStorageOrder,
int ResStorageOrder, bool AAT, int UpLo>
struct selfadjoint_product;
// as usual if the result is row major => we transpose the product
template <typename Scalar, typename Index, int MatStorageOrder, bool AAT, int UpLo>
struct selfadjoint_product<Scalar, Index, MatStorageOrder, RowMajor, AAT, UpLo>
{
static EIGEN_STRONG_INLINE void run(Index size, Index depth, const Scalar* mat, Index matStride, Scalar* res, Index resStride, Scalar alpha)
{
selfadjoint_product<Scalar, Index, MatStorageOrder, ColMajor, !AAT, UpLo==Lower?Upper:Lower>
::run(size, depth, mat, matStride, res, resStride, alpha);
}
};
template <typename Scalar, typename Index,
int MatStorageOrder, bool AAT, int UpLo>
struct selfadjoint_product<Scalar, Index, MatStorageOrder, ColMajor, AAT, UpLo>
{
static EIGEN_DONT_INLINE void run(
Index size, Index depth,
const Scalar* _mat, Index matStride,
Scalar* res, Index resStride,
Scalar alpha)
{
const_blas_data_mapper<Scalar, Index, MatStorageOrder> mat(_mat,matStride);
// if(AAT)
// alpha = conj(alpha);
typedef gebp_traits<Scalar,Scalar> Traits;
Index kc = depth; // cache block size along the K direction
Index mc = size; // cache block size along the M direction
Index nc = size; // cache block size along the N direction
computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
// !!! mc must be a multiple of nr:
if(mc>Traits::nr)
mc = (mc/Traits::nr)*Traits::nr;
Scalar* blockA = ei_aligned_stack_new(Scalar, kc*mc);
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
std::size_t sizeB = sizeW + kc*size;
Scalar* allocatedBlockB = ei_aligned_stack_new(Scalar, sizeB);
Scalar* blockB = allocatedBlockB + sizeW;
// note that the actual rhs is the transpose/adjoint of mat
enum {
ConjLhs = NumTraits<Scalar>::IsComplex && !AAT,
ConjRhs = NumTraits<Scalar>::IsComplex && AAT
};
gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjLhs, ConjRhs> gebp_kernel;
gemm_pack_rhs<Scalar, Index, Traits::nr,MatStorageOrder==RowMajor ? ColMajor : RowMajor> pack_rhs;
gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, MatStorageOrder, false> pack_lhs;
sybb_kernel<Scalar, Index, Traits::mr, Traits::nr, ConjLhs, ConjRhs, UpLo> sybb;
for(Index k2=0; k2<depth; k2+=kc)
{
const Index actual_kc = std::min(k2+kc,depth)-k2;
// note that the actual rhs is the transpose/adjoint of mat
pack_rhs(blockB, &mat(0,k2), matStride, actual_kc, size);
for(Index i2=0; i2<size; i2+=mc)
{
const Index actual_mc = std::min(i2+mc,size)-i2;
pack_lhs(blockA, &mat(i2, k2), matStride, actual_kc, actual_mc);
// the selected actual_mc * size panel of res is split into three different part:
// 1 - before the diagonal => processed with gebp or skipped
// 2 - the actual_mc x actual_mc symmetric block => processed with a special kernel
// 3 - after the diagonal => processed with gebp or skipped
if (UpLo==Lower)
gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, std::min(size,i2), alpha,
-1, -1, 0, 0, allocatedBlockB);
sybb(res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha, allocatedBlockB);
if (UpLo==Upper)
{
Index j2 = i2+actual_mc;
gebp_kernel(res+resStride*j2+i2, resStride, blockA, blockB+actual_kc*j2, actual_mc, actual_kc, std::max(Index(0), size-j2), alpha,
-1, -1, 0, 0, allocatedBlockB);
}
}
}
ei_aligned_stack_delete(Scalar, blockA, kc*mc);
ei_aligned_stack_delete(Scalar, allocatedBlockB, sizeB);
}
};
// Optimized SYmmetric packed Block * packed Block product kernel.
// This kernel is built on top of the gebp kernel:
// - the current selfadjoint block (res) is processed per panel of actual_mc x BlockSize
// where BlockSize is set to the minimal value allowing gebp to be as fast as possible
// - then, as usual, each panel is split into three parts along the diagonal,
// the sub blocks above and below the diagonal are processed as usual,
// while the selfadjoint block overlapping the diagonal is evaluated into a
// small temporary buffer which is then accumulated into the result using a
// triangular traversal.
template<typename Scalar, typename Index, int mr, int nr, bool ConjLhs, bool ConjRhs, int UpLo>
struct sybb_kernel
{
enum {
PacketSize = packet_traits<Scalar>::size,
BlockSize = EIGEN_PLAIN_ENUM_MAX(mr,nr)
};
void operator()(Scalar* res, Index resStride, const Scalar* blockA, const Scalar* blockB, Index size, Index depth, Scalar alpha, Scalar* workspace)
{
gebp_kernel<Scalar, Scalar, Index, mr, nr, ConjLhs, ConjRhs> gebp_kernel;
Matrix<Scalar,BlockSize,BlockSize,ColMajor> buffer;
// let's process the block per panel of actual_mc x BlockSize,
// again, each is split into three parts, etc.
for (Index j=0; j<size; j+=BlockSize)
{
Index actualBlockSize = std::min<Index>(BlockSize,size - j);
const Scalar* actual_b = blockB+j*depth;
if(UpLo==Upper)
gebp_kernel(res+j*resStride, resStride, blockA, actual_b, j, depth, actualBlockSize, alpha,
-1, -1, 0, 0, workspace);
// selfadjoint micro block
{
Index i = j;
buffer.setZero();
// 1 - apply the kernel on the temporary buffer
gebp_kernel(buffer.data(), BlockSize, blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha,
-1, -1, 0, 0, workspace);
// 2 - triangular accumulation
for(Index j1=0; j1<actualBlockSize; ++j1)
{
Scalar* r = res + (j+j1)*resStride + i;
for(Index i1=UpLo==Lower ? j1 : 0;
UpLo==Lower ? i1<actualBlockSize : i1<=j1; ++i1)
r[i1] += buffer(i1,j1);
}
}
if(UpLo==Lower)
{
Index i = j+actualBlockSize;
gebp_kernel(res+j*resStride+i, resStride, blockA+depth*i, actual_b, size-i, depth, actualBlockSize, alpha,
-1, -1, 0, 0, workspace);
}
}
}
};
} // end namespace internal
// high level API
template<typename MatrixType, unsigned int UpLo>
@ -209,12 +46,13 @@ SelfAdjointView<MatrixType,UpLo>& SelfAdjointView<MatrixType,UpLo>
Scalar actualAlpha = alpha * UBlasTraits::extractScalarFactor(u.derived());
enum { IsRowMajor = (internal::traits<MatrixType>::Flags&RowMajorBit) ? 1 : 0 };
internal::selfadjoint_product<Scalar, Index,
_ActualUType::Flags&RowMajorBit ? RowMajor : ColMajor,
MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor,
!UBlasTraits::NeedToConjugate, UpLo>
::run(_expression().cols(), actualU.cols(), &actualU.coeff(0,0), actualU.outerStride(),
internal::general_matrix_matrix_triangular_product<Index,
Scalar, _ActualUType::Flags&RowMajorBit ? RowMajor : ColMajor, UBlasTraits::NeedToConjugate && NumTraits<Scalar>::IsComplex,
Scalar, _ActualUType::Flags&RowMajorBit ? ColMajor : RowMajor, (!UBlasTraits::NeedToConjugate) && NumTraits<Scalar>::IsComplex,
MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor, UpLo>
::run(_expression().cols(), actualU.cols(),
&actualU.coeff(0,0), actualU.outerStride(), &actualU.coeff(0,0), actualU.outerStride(),
const_cast<Scalar*>(_expression().data()), _expression().outerStride(), actualAlpha);
return *this;

View File

@ -73,6 +73,7 @@ ei_add_test(product_syrk)
ei_add_test(product_trmv)
ei_add_test(product_trmm)
ei_add_test(product_trsolve)
ei_add_test(product_mmtr)
ei_add_test(product_notemporary)
ei_add_test(stable_norm)
ei_add_test(bandmatrix)

80
test/product_mmtr.cpp Normal file
View File

@ -0,0 +1,80 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#define CHECK_MMTR(DEST, TRI, OP) { \
ref2 = ref1 = DEST; \
DEST.template triangularView<TRI>() OP; \
ref1 OP; \
ref2.template triangularView<TRI>() = ref1; \
VERIFY_IS_APPROX(DEST,ref2); \
}
template<typename Scalar> void mmtr(int size)
{
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> MatrixColMaj;
typedef Matrix<Scalar,Dynamic,Dynamic,RowMajor> MatrixRowMaj;
DenseIndex othersize = internal::random<DenseIndex>(1,200);
MatrixColMaj matc(size, size);
MatrixRowMaj matr(size, size);
MatrixColMaj ref1(size, size), ref2(size, size);
MatrixColMaj soc(size,othersize); soc.setRandom();
MatrixColMaj osc(othersize,size); osc.setRandom();
MatrixRowMaj sor(size,othersize); sor.setRandom();
MatrixRowMaj osr(othersize,size); osr.setRandom();
Scalar s = internal::random<Scalar>();
CHECK_MMTR(matc, Lower, = s*soc*sor.adjoint());
CHECK_MMTR(matc, Upper, = s*(soc*soc.adjoint()));
CHECK_MMTR(matr, Lower, = s*soc*soc.adjoint());
CHECK_MMTR(matr, Upper, = soc*(s*sor.adjoint()));
CHECK_MMTR(matc, Lower, += s*soc*soc.adjoint());
CHECK_MMTR(matc, Upper, += s*(soc*sor.transpose()));
CHECK_MMTR(matr, Lower, += s*sor*soc.adjoint());
CHECK_MMTR(matr, Upper, += soc*(s*soc.adjoint()));
CHECK_MMTR(matc, Lower, -= s*soc*soc.adjoint());
CHECK_MMTR(matc, Upper, -= s*(osc.transpose()*osc.conjugate()));
CHECK_MMTR(matr, Lower, -= s*soc*soc.adjoint());
CHECK_MMTR(matr, Upper, -= soc*(s*soc.adjoint()));
}
void test_product_mmtr()
{
for(int i = 0; i < g_repeat ; i++)
{
CALL_SUBTEST_1((mmtr<float>(internal::random<int>(1,320))));
CALL_SUBTEST_2((mmtr<double>(internal::random<int>(1,320))));
CALL_SUBTEST_3((mmtr<std::complex<float> >(internal::random<int>(1,200))));
CALL_SUBTEST_4((mmtr<std::complex<double> >(internal::random<int>(1,200))));
}
}