mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 11:49:02 +08:00
eigenization of ei_r1updt()
This commit is contained in:
parent
40eac2d8a0
commit
27cf1b3a97
@ -359,7 +359,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(
|
||||
wa2 = (wa2-wa3)/pnorm;
|
||||
|
||||
/* compute the qr factorization of the updated jacobian. */
|
||||
ei_r1updt<Scalar>(R, wa1.data(), v_givens, w_givens, wa2.data(), wa3.data(), &sing);
|
||||
ei_r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
|
||||
ei_r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
|
||||
ei_r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
|
||||
|
||||
@ -608,7 +608,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(
|
||||
wa2 = (wa2-wa3)/pnorm;
|
||||
|
||||
/* compute the qr factorization of the updated jacobian. */
|
||||
ei_r1updt<Scalar>(R, wa1.data(), v_givens, w_givens, wa2.data(), wa3.data(), &sing);
|
||||
ei_r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
|
||||
ei_r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
|
||||
ei_r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
|
||||
|
||||
|
@ -1,9 +1,13 @@
|
||||
|
||||
template <typename Scalar>
|
||||
void ei_r1updt(Matrix< Scalar, Dynamic, Dynamic > &s, const Scalar *u,
|
||||
void ei_r1updt(
|
||||
Matrix< Scalar, Dynamic, Dynamic > &s,
|
||||
const Matrix< Scalar, Dynamic, 1> &u,
|
||||
std::vector<PlanarRotation<Scalar> > &v_givens,
|
||||
std::vector<PlanarRotation<Scalar> > &w_givens,
|
||||
Scalar *v, Scalar *w, bool *sing)
|
||||
Matrix< Scalar, Dynamic, 1> &v,
|
||||
Matrix< Scalar, Dynamic, 1> &w,
|
||||
bool *sing)
|
||||
{
|
||||
/* Local variables */
|
||||
const int m = s.rows();
|
||||
@ -15,71 +19,68 @@ void ei_r1updt(Matrix< Scalar, Dynamic, Dynamic > &s, const Scalar *u,
|
||||
// ei_r1updt had a broader usecase, but we dont use it here. And, more
|
||||
// importantly, we can not test it.
|
||||
assert(m==n);
|
||||
assert(u.size()==m);
|
||||
assert(v.size()==n);
|
||||
assert(w.size()==n);
|
||||
|
||||
/* Parameter adjustments */
|
||||
--w;
|
||||
--u;
|
||||
--v;
|
||||
/* move the nontrivial part of the last column of s into w. */
|
||||
w[n-1] = s(n-1,n-1);
|
||||
|
||||
/* move the nontrivial part of the last column of s into w. */
|
||||
w[n] = s(n-1,n-1);
|
||||
|
||||
/* rotate the vector v into a multiple of the n-th unit vector */
|
||||
/* in such a way that a spike is introduced into w. */
|
||||
for (j=n-1; j>=1; --j) {
|
||||
/* rotate the vector v into a multiple of the n-th unit vector */
|
||||
/* in such a way that a spike is introduced into w. */
|
||||
for (j=n-2; j>=0; --j) {
|
||||
w[j] = 0.;
|
||||
if (v[j] != 0.) {
|
||||
/* determine a givens rotation which eliminates the */
|
||||
/* j-th element of v. */
|
||||
givens.makeGivens(-v[n], v[j]);
|
||||
/* determine a givens rotation which eliminates the */
|
||||
/* j-th element of v. */
|
||||
givens.makeGivens(-v[n-1], v[j]);
|
||||
|
||||
/* apply the transformation to v and store the information */
|
||||
/* necessary to recover the givens rotation. */
|
||||
v[n] = givens.s() * v[j] + givens.c() * v[n];
|
||||
v_givens[j-1] = givens;
|
||||
/* apply the transformation to v and store the information */
|
||||
/* necessary to recover the givens rotation. */
|
||||
v[n-1] = givens.s() * v[j] + givens.c() * v[n-1];
|
||||
v_givens[j] = givens;
|
||||
|
||||
/* apply the transformation to s and extend the spike in w. */
|
||||
for (i = j; i <= m; ++i) {
|
||||
temp = givens.c() * s(j-1,i-1) - givens.s() * w[i];
|
||||
w[i] = givens.s() * s(j-1,i-1) + givens.c() * w[i];
|
||||
s(j-1,i-1) = temp;
|
||||
/* apply the transformation to s and extend the spike in w. */
|
||||
for (i = j; i < m; ++i) {
|
||||
temp = givens.c() * s(j,i) - givens.s() * w[i];
|
||||
w[i] = givens.s() * s(j,i) + givens.c() * w[i];
|
||||
s(j,i) = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* add the spike from the rank 1 update to w. */
|
||||
for (i = 1; i <= m; ++i)
|
||||
w[i] += v[n] * u[i];
|
||||
/* add the spike from the rank 1 update to w. */
|
||||
w += v[n-1] * u;
|
||||
|
||||
/* eliminate the spike. */
|
||||
/* eliminate the spike. */
|
||||
*sing = false;
|
||||
for (j = 1; j <= n-1; ++j) {
|
||||
for (j = 0; j < n-1; ++j) {
|
||||
if (w[j] != 0.) {
|
||||
/* determine a givens rotation which eliminates the */
|
||||
/* j-th element of the spike. */
|
||||
givens.makeGivens(-s(j-1,j-1), w[j]);
|
||||
/* determine a givens rotation which eliminates the */
|
||||
/* j-th element of the spike. */
|
||||
givens.makeGivens(-s(j,j), w[j]);
|
||||
|
||||
/* apply the transformation to s and reduce the spike in w. */
|
||||
for (i = j; i <= m; ++i) {
|
||||
temp = givens.c() * s(j-1,i-1) + givens.s() * w[i];
|
||||
w[i] = -givens.s() * s(j-1,i-1) + givens.c() * w[i];
|
||||
s(j-1,i-1) = temp;
|
||||
/* apply the transformation to s and reduce the spike in w. */
|
||||
for (i = j; i < m; ++i) {
|
||||
temp = givens.c() * s(j,i) + givens.s() * w[i];
|
||||
w[i] = -givens.s() * s(j,i) + givens.c() * w[i];
|
||||
s(j,i) = temp;
|
||||
}
|
||||
|
||||
/* store the information necessary to recover the */
|
||||
/* givens rotation. */
|
||||
w_givens[j-1] = givens;
|
||||
/* store the information necessary to recover the */
|
||||
/* givens rotation. */
|
||||
w_givens[j] = givens;
|
||||
}
|
||||
|
||||
/* test for zero diagonal elements in the output s. */
|
||||
if (s(j-1,j-1) == 0.) {
|
||||
/* test for zero diagonal elements in the output s. */
|
||||
if (s(j,j) == 0.) {
|
||||
*sing = true;
|
||||
}
|
||||
}
|
||||
/* move w back into the last column of the output s. */
|
||||
s(n-1,n-1) = w[n];
|
||||
/* move w back into the last column of the output s. */
|
||||
s(n-1,n-1) = w[n-1];
|
||||
|
||||
if (s(j-1,j-1) == 0.) {
|
||||
if (s(j,j) == 0.) {
|
||||
*sing = true;
|
||||
}
|
||||
return;
|
||||
|
Loading…
x
Reference in New Issue
Block a user