backporting LLT accuracy fixes

This commit is contained in:
Gael Guennebaud 2009-06-11 16:18:37 +02:00
parent 5ec4922349
commit 287c7b8818
2 changed files with 59 additions and 18 deletions

View File

@ -1,5 +1,5 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
@ -41,11 +41,16 @@
* and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
* situations like generalised eigen problems with hermitian matrices.
*
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
* Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
* use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
* has a solution.
*
* \sa MatrixBase::llt(), class LDLT
*/
/* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
*/
template<typename MatrixType> class LLT
{
private:
@ -60,17 +65,30 @@ template<typename MatrixType> class LLT
public:
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LLT::compute(const MatrixType&).
*/
LLT() : m_matrix(), m_isInitialized(false) {}
LLT(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols())
: m_matrix(matrix.rows(), matrix.cols()),
m_isInitialized(false)
{
compute(matrix);
}
/** \returns the lower triangular matrix L */
inline Part<MatrixType, LowerTriangular> matrixL(void) const { return m_matrix; }
inline Part<MatrixType, LowerTriangular> matrixL(void) const
{
ei_assert(m_isInitialized && "LLT is not initialized.");
return m_matrix;
}
/** \returns true if the matrix is positive definite */
inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
/** \deprecated */
inline bool isPositiveDefinite(void) const { return m_isInitialized && m_isPositiveDefinite; }
template<typename RhsDerived, typename ResDerived>
bool solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const;
@ -86,6 +104,7 @@ template<typename MatrixType> class LLT
* The strict upper part is not used and even not initialized.
*/
MatrixType m_matrix;
bool m_isInitialized;
bool m_isPositiveDefinite;
};
@ -95,24 +114,34 @@ template<typename MatrixType>
void LLT<MatrixType>::compute(const MatrixType& a)
{
assert(a.rows()==a.cols());
m_isPositiveDefinite = true;
const int size = a.rows();
m_matrix.resize(size, size);
const RealScalar eps = ei_sqrt(precision<Scalar>());
// The biggest overall is the point of reference to which further diagonals
// are compared; if any diagonal is negligible compared
// to the largest overall, the algorithm bails. This cutoff is suggested
// in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
// Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
// Algorithms" page 217, also by Higham.
const RealScalar cutoff = machine_epsilon<Scalar>() * size * a.diagonal().cwise().abs().maxCoeff();
RealScalar x;
x = ei_real(a.coeff(0,0));
m_isPositiveDefinite = x > eps && ei_isMuchSmallerThan(ei_imag(a.coeff(0,0)), RealScalar(1));
m_matrix.coeffRef(0,0) = ei_sqrt(x);
if(size==1)
{
m_isInitialized = true;
return;
}
m_matrix.col(0).end(size-1) = a.row(0).end(size-1).adjoint() / ei_real(m_matrix.coeff(0,0));
for (int j = 1; j < size; ++j)
{
Scalar tmp = ei_real(a.coeff(j,j)) - m_matrix.row(j).start(j).squaredNorm();
x = ei_real(tmp);
if (x < eps || (!ei_isMuchSmallerThan(ei_imag(tmp), RealScalar(1))))
x = ei_real(a.coeff(j,j)) - m_matrix.row(j).start(j).squaredNorm();
if (x < cutoff)
{
m_isPositiveDefinite = false;
return;
continue;
}
m_matrix.coeffRef(j,j) = x = ei_sqrt(x);
int endSize = size-j-1;
@ -127,12 +156,14 @@ void LLT<MatrixType>::compute(const MatrixType& a)
- m_matrix.col(j).end(endSize) ) / x;
}
}
m_isInitialized = true;
}
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
* The result is stored in \a result
*
* \returns true in case of success, false otherwise.
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* In other words, it computes \f$ b = A^{-1} b \f$ with
* \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left.
@ -146,6 +177,7 @@ template<typename MatrixType>
template<typename RhsDerived, typename ResDerived>
bool LLT<MatrixType>::solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const
{
ei_assert(m_isInitialized && "LLT is not initialized.");
const int size = m_matrix.rows();
ei_assert(size==b.rows() && "LLT::solve(): invalid number of rows of the right hand side matrix b");
return solveInPlace((*result) = b);
@ -155,6 +187,8 @@ bool LLT<MatrixType>::solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDeriv
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
@ -164,10 +198,9 @@ template<typename MatrixType>
template<typename Derived>
bool LLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
ei_assert(m_isInitialized && "LLT is not initialized.");
const int size = m_matrix.rows();
ei_assert(size==bAndX.rows());
if (!m_isPositiveDefinite)
return false;
matrixL().solveTriangularInPlace(bAndX);
m_matrix.adjoint().template part<UpperTriangular>().solveTriangularInPlace(bAndX);
return true;

View File

@ -26,6 +26,7 @@
#define EIGEN_MATHFUNCTIONS_H
template<typename T> inline typename NumTraits<T>::Real precision();
template<typename T> inline typename NumTraits<T>::Real machine_epsilon();
template<typename T> inline T ei_random(T a, T b);
template<typename T> inline T ei_random();
template<typename T> inline T ei_random_amplitude()
@ -49,6 +50,7 @@ template<typename T> inline T ei_hypot(T x, T y)
**************/
template<> inline int precision<int>() { return 0; }
template<> inline int machine_epsilon<int>() { return 0; }
inline int ei_real(int x) { return x; }
inline int ei_imag(int) { return 0; }
inline int ei_conj(int x) { return x; }
@ -93,6 +95,7 @@ inline bool ei_isApproxOrLessThan(int a, int b, int = precision<int>())
**************/
template<> inline float precision<float>() { return 1e-5f; }
template<> inline float machine_epsilon<float>() { return 1.192e-07f; }
inline float ei_real(float x) { return x; }
inline float ei_imag(float) { return 0.f; }
inline float ei_conj(float x) { return x; }
@ -138,6 +141,8 @@ inline bool ei_isApproxOrLessThan(float a, float b, float prec = precision<float
**************/
template<> inline double precision<double>() { return 1e-11; }
template<> inline double machine_epsilon<double>() { return 2.220e-16; }
inline double ei_real(double x) { return x; }
inline double ei_imag(double) { return 0.; }
inline double ei_conj(double x) { return x; }
@ -183,6 +188,7 @@ inline bool ei_isApproxOrLessThan(double a, double b, double prec = precision<do
*********************/
template<> inline float precision<std::complex<float> >() { return precision<float>(); }
template<> inline float machine_epsilon<std::complex<float> >() { return machine_epsilon<float>(); }
inline float ei_real(const std::complex<float>& x) { return std::real(x); }
inline float ei_imag(const std::complex<float>& x) { return std::imag(x); }
inline std::complex<float> ei_conj(const std::complex<float>& x) { return std::conj(x); }
@ -216,6 +222,7 @@ inline bool ei_isApprox(const std::complex<float>& a, const std::complex<float>&
**********************/
template<> inline double precision<std::complex<double> >() { return precision<double>(); }
template<> inline double machine_epsilon<std::complex<double> >() { return machine_epsilon<double>(); }
inline double ei_real(const std::complex<double>& x) { return std::real(x); }
inline double ei_imag(const std::complex<double>& x) { return std::imag(x); }
inline std::complex<double> ei_conj(const std::complex<double>& x) { return std::conj(x); }
@ -250,6 +257,7 @@ inline bool ei_isApprox(const std::complex<double>& a, const std::complex<double
******************/
template<> inline long double precision<long double>() { return precision<double>(); }
template<> inline long double machine_epsilon<long double>() { return 1.084e-19l; }
inline long double ei_real(long double x) { return x; }
inline long double ei_imag(long double) { return 0.; }
inline long double ei_conj(long double x) { return x; }