Backport numerical robustness fixes from 3.3 branch

This commit is contained in:
Gael Guennebaud 2016-07-11 22:48:52 +02:00
parent 4f7baefa81
commit 2a3680da3d

View File

@ -359,29 +359,42 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false
{
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
typedef typename SVD::Index Index;
static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
typedef typename MatrixType::RealScalar RealScalar;
static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; }
};
template<typename MatrixType, int QRPreconditioner>
struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
{
typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
typedef typename SVD::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename SVD::Index Index;
static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry)
{
using std::sqrt;
using std::abs;
using std::max;
Scalar z;
JacobiRotation<Scalar> rot;
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
const RealScalar precision = NumTraits<Scalar>::epsilon();
if(n==0)
{
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.row(p) *= z;
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
if(work_matrix.coeff(q,q)!=Scalar(0))
// make sure first column is zero
work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0);
if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero)
{
// work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when computing n
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.row(p) *= z;
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
}
if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero)
{
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z;
@ -395,19 +408,25 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
rot.s() = work_matrix.coeff(q,p) / n;
work_matrix.applyOnTheLeft(p,q,rot);
if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
if(work_matrix.coeff(p,q) != Scalar(0))
if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero)
{
Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.col(q) *= z;
if(svd.computeV()) svd.m_matrixV.col(q) *= z;
}
if(work_matrix.coeff(q,q) != Scalar(0))
if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero)
{
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z;
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
}
}
// update largest diagonal entry
maxDiagEntry = max EIGEN_EMPTY (maxDiagEntry,max EIGEN_EMPTY (abs(work_matrix.coeff(p,p)), abs(work_matrix.coeff(q,q))));
// and check whether the 2x2 block is already diagonal
RealScalar threshold = max EIGEN_EMPTY (considerAsZero, precision * maxDiagEntry);
return abs(work_matrix.coeff(p,q))>threshold || abs(work_matrix.coeff(q,p)) > threshold;
}
};
@ -424,22 +443,23 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
JacobiRotation<RealScalar> rot1;
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
if(t == RealScalar(0))
if(d == RealScalar(0))
{
rot1.c() = RealScalar(0);
rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
rot1.s() = RealScalar(0);
rot1.c() = RealScalar(1);
}
else
{
RealScalar t2d2 = numext::hypot(t,d);
rot1.c() = abs(t)/t2d2;
rot1.s() = d/t2d2;
if(t<RealScalar(0))
rot1.s() = -rot1.s();
// If d!=0, then t/d cannot overflow because the magnitude of the
// entries forming d are not too small compared to the ones forming t.
RealScalar u = t / d;
RealScalar tmp = sqrt(RealScalar(1) + numext::abs2(u));
rot1.s() = RealScalar(1) / tmp;
rot1.c() = u / tmp;
}
m.applyOnTheLeft(0,1,rot1);
j_right->makeJacobi(m,0,1);
*j_left = rot1 * j_right->transpose();
*j_left = rot1 * j_right->transpose();
}
} // end namespace internal
@ -826,6 +846,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
check_template_parameters();
using std::abs;
using std::max;
allocate(matrix.rows(), matrix.cols(), computationOptions);
// currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
@ -857,6 +878,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
}
/*** step 2. The main Jacobi SVD iteration. ***/
RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff();
bool finished = false;
while(!finished)
@ -872,25 +894,27 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
// if this 2x2 sub-matrix is not diagonal already...
// notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
// keep us iterating forever. Similarly, small denormal numbers are considered zero.
using std::max;
RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)),
abs(m_workMatrix.coeff(q,q))));
// We compare both values to threshold instead of calling max to be robust to NaN (See bug 791)
RealScalar threshold = max EIGEN_EMPTY (considerAsZero, precision * maxDiagEntry);
if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold)
{
finished = false;
// perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
JacobiRotation<RealScalar> j_left, j_right;
internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
// the complex to real operation returns true is the updated 2x2 block is not already diagonal
if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q, maxDiagEntry))
{
JacobiRotation<RealScalar> j_left, j_right;
internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
// accumulate resulting Jacobi rotations
m_workMatrix.applyOnTheLeft(p,q,j_left);
if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
// accumulate resulting Jacobi rotations
m_workMatrix.applyOnTheLeft(p,q,j_left);
if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
m_workMatrix.applyOnTheRight(p,q,j_right);
if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
m_workMatrix.applyOnTheRight(p,q,j_right);
if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
// keep track of the largest diagonal coefficient
maxDiagEntry = max EIGEN_EMPTY (maxDiagEntry,max EIGEN_EMPTY (abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q))));
}
}
}
}