Merged kmargar/eigen/tip into default

This commit is contained in:
Konstantinos Margaritis 2016-04-05 22:22:08 +03:00
commit 2bba4ee2cf
8 changed files with 922 additions and 6 deletions

View File

@ -250,7 +250,11 @@ if(NOT MSVC)
message(STATUS "Enabling NEON in tests/examples")
endif()
option(EIGEN_TEST_ZVECTOR "Enable/Disable S390X(zEC13) ZVECTOR in tests/examples" OFF)
if(EIGEN_TEST_ZVECTOR)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=z13 -mzvector")
message(STATUS "Enabling S390X(zEC13) ZVECTOR in tests/examples")
endif()
check_cxx_compiler_flag("-fopenmp" COMPILER_SUPPORT_OPENMP)
if(COMPILER_SUPPORT_OPENMP)

View File

@ -197,6 +197,10 @@
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_NEON
#include <arm_neon.h>
#elif (defined __s390x__ && defined __VEC__)
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_ZVECTOR
#include <vecintrin.h>
#endif
#endif
@ -270,6 +274,8 @@ inline static const char *SimdInstructionSetsInUse(void) {
return "VSX";
#elif defined(EIGEN_VECTORIZE_NEON)
return "ARM NEON";
#elif defined(EIGEN_VECTORIZE_ZVECTOR)
return "S390X ZVECTOR";
#else
return "None";
#endif
@ -332,6 +338,10 @@ using std::ptrdiff_t;
#include "src/Core/arch/NEON/PacketMath.h"
#include "src/Core/arch/NEON/MathFunctions.h"
#include "src/Core/arch/NEON/Complex.h"
#elif defined EIGEN_VECTORIZE_ZVECTOR
#include "src/Core/arch/ZVector/PacketMath.h"
#include "src/Core/arch/ZVector/MathFunctions.h"
#include "src/Core/arch/ZVector/Complex.h"
#endif
#include "src/Core/arch/CUDA/Half.h"

View File

@ -0,0 +1,6 @@
FILE(GLOB Eigen_Core_arch_ZVector_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_arch_ZVector_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/ZVector COMPONENT Devel
)

View File

@ -0,0 +1,201 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMPLEX32_ALTIVEC_H
#define EIGEN_COMPLEX32_ALTIVEC_H
namespace Eigen {
namespace internal {
static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2d_ZERO_, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 };
static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_ZERO_, 8);//{ 0x8000000000000000, 0x0000000000000000 };
struct Packet1cd
{
EIGEN_STRONG_INLINE Packet1cd() {}
EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {}
Packet2d v;
};
template<> struct packet_traits<std::complex<double> > : default_packet_traits
{
typedef Packet1cd type;
typedef Packet1cd half;
enum {
Vectorizable = 1,
AlignedOnScalar = 0,
size = 1,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1, alignment=Aligned16}; typedef Packet1cd half; };
template<> EIGEN_STRONG_INLINE Packet1cd pload <Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from)); }
template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from)); }
template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from)
{ /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); }
template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(const std::complex<double>* from, Index stride)
{
std::complex<double> EIGEN_ALIGN16 af[2];
af[0] = from[0*stride];
af[1] = from[1*stride];
return pload<Packet1cd>(af);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to, const Packet1cd& from, Index stride)
{
std::complex<double> EIGEN_ALIGN16 af[2];
pstore<std::complex<double> >(af, from);
to[0*stride] = af[0];
to[1*stride] = af[1];
}
template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v + b.v); }
template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v - b.v); }
template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(Packet2d(a.v))); }
template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd((Packet2d)vec_xor((Packet2d)a.v, (Packet2d)p2ul_CONJ_XOR2)); }
template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
Packet2d a_re, a_im, v1, v2;
// Permute and multiply the real parts of a and b
a_re = vec_perm(a.v, a.v, p16uc_PSET64_HI);
// Get the imaginary parts of a
a_im = vec_perm(a.v, a.v, p16uc_PSET64_LO);
// multiply a_re * b
v1 = vec_madd(a_re, b.v, p2d_ZERO);
// multiply a_im * b and get the conjugate result
v2 = vec_madd(a_im, b.v, p2d_ZERO);
v2 = (Packet2d) vec_sld((Packet4ui)v2, (Packet4ui)v2, 8);
v2 = (Packet2d) vec_xor((Packet2d)v2, (Packet2d) p2ul_CONJ_XOR1);
return Packet1cd(v1 + v2);
}
template<> EIGEN_STRONG_INLINE Packet1cd pand <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_and(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd por <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_or(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pxor <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_xor(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_and(a.v, vec_nor(b.v,b.v))); }
template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from)
{
return pset1<Packet1cd>(*from);
}
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { EIGEN_ZVECTOR_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a)
{
std::complex<double> EIGEN_ALIGN16 res[2];
pstore<std::complex<double> >(res, a);
return res[0];
}
template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }
template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a)
{
return pfirst(a);
}
template<> EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs)
{
return vecs[0];
}
template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a)
{
return pfirst(a);
}
template<int Offset>
struct palign_impl<Offset,Packet1cd>
{
static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/)
{
// FIXME is it sure we never have to align a Packet1cd?
// Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes boundary...
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, false,true>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
return internal::pmul(a, pconj(b));
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, true,false>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
return internal::pmul(pconj(a), b);
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
return pconj(internal::pmul(a, b));
}
};
template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
// TODO optimize it for AltiVec
Packet1cd res = conj_helper<Packet1cd,Packet1cd,false,true>().pmul(a,b);
Packet2d s = vec_madd(b.v, b.v, p2d_ZERO_);
return Packet1cd(pdiv(res.v, s + vec_perm(s, s, p16uc_REVERSE64)));
}
EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
{
return Packet1cd(preverse(Packet2d(x.v)));
}
EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd,2>& kernel)
{
Packet2d tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI);
kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO);
kernel.packet[0].v = tmp;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COMPLEX32_ALTIVEC_H

View File

@ -0,0 +1,110 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Julien Pommier
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/* The sin, cos, exp, and log functions of this file come from
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
*/
#ifndef EIGEN_MATH_FUNCTIONS_ALTIVEC_H
#define EIGEN_MATH_FUNCTIONS_ALTIVEC_H
namespace Eigen {
namespace internal {
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d pexp<Packet2d>(const Packet2d& _x)
{
Packet2d x = _x;
_EIGEN_DECLARE_CONST_Packet2d(1 , 1.0);
_EIGEN_DECLARE_CONST_Packet2d(2 , 2.0);
_EIGEN_DECLARE_CONST_Packet2d(half, 0.5);
_EIGEN_DECLARE_CONST_Packet2d(exp_hi, 709.437);
_EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303);
_EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
Packet2d tmp, fx;
Packet2l emm0;
// clamp x
x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo);
/* express exp(x) as exp(g + n*log(2)) */
fx = pmadd(p2d_cephes_LOG2EF, x, p2d_half);
fx = vec_floor(fx);
tmp = pmul(fx, p2d_cephes_exp_C1);
Packet2d z = pmul(fx, p2d_cephes_exp_C2);
x = psub(x, tmp);
x = psub(x, z);
Packet2d x2 = pmul(x,x);
Packet2d px = p2d_cephes_exp_p0;
px = pmadd(px, x2, p2d_cephes_exp_p1);
px = pmadd(px, x2, p2d_cephes_exp_p2);
px = pmul (px, x);
Packet2d qx = p2d_cephes_exp_q0;
qx = pmadd(qx, x2, p2d_cephes_exp_q1);
qx = pmadd(qx, x2, p2d_cephes_exp_q2);
qx = pmadd(qx, x2, p2d_cephes_exp_q3);
x = pdiv(px,psub(qx,px));
x = pmadd(p2d_2,x,p2d_1);
// build 2^n
emm0 = vec_ctsl(fx, 0);
static const Packet2l p2l_1023 = { 1023, 1023 };
static const Packet2ul p2ul_52 = { 52, 52 };
emm0 = emm0 + p2l_1023;
emm0 = emm0 << reinterpret_cast<Packet2l>(p2ul_52);
// Altivec's max & min operators just drop silent NaNs. Check NaNs in
// inputs and return them unmodified.
Packet2ul isnumber_mask = reinterpret_cast<Packet2ul>(vec_cmpeq(_x, _x));
return vec_sel(_x, pmax(pmul(x, reinterpret_cast<Packet2d>(emm0)), _x),
isnumber_mask);
}
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d psqrt<Packet2d>(const Packet2d& x)
{
return __builtin_s390_vfsqdb(x);
}
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d prsqrt<Packet2d>(const Packet2d& x) {
// Unfortunately we can't use the much faster mm_rqsrt_pd since it only provides an approximation.
return pset1<Packet2d>(1.0) / psqrt<Packet2d>(x);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MATH_FUNCTIONS_ALTIVEC_H

View File

@ -0,0 +1,575 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Konstantinos Margaritis <markos@freevec.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PACKET_MATH_ZVECTOR_H
#define EIGEN_PACKET_MATH_ZVECTOR_H
#include <stdint.h>
namespace Eigen {
namespace internal {
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4
#endif
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#endif
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
#endif
// NOTE Altivec has 32 registers, but Eigen only accepts a value of 8 or 16
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32
#endif
typedef __vector int Packet4i;
typedef __vector unsigned int Packet4ui;
typedef __vector __bool int Packet4bi;
typedef __vector short int Packet8i;
typedef __vector unsigned char Packet16uc;
typedef __vector double Packet2d;
typedef __vector unsigned long long Packet2ul;
typedef __vector long long Packet2l;
typedef union {
int32_t i[4];
uint32_t ui[4];
int64_t l[2];
uint64_t ul[2];
double d[2];
Packet4i v4i;
Packet4ui v4ui;
Packet2l v2l;
Packet2ul v2ul;
Packet2d v2d;
} Packet;
// We don't want to write the same code all the time, but we need to reuse the constants
// and it doesn't really work to declare them global, so we define macros instead
#define _EIGEN_DECLARE_CONST_FAST_Packet4i(NAME,X) \
Packet4i p4i_##NAME = reinterpret_cast<Packet4i>(vec_splat_s32(X))
#define _EIGEN_DECLARE_CONST_FAST_Packet2d(NAME,X) \
Packet2d p2d_##NAME = reinterpret_cast<Packet2d>(vec_splat_s64(X))
#define _EIGEN_DECLARE_CONST_FAST_Packet2l(NAME,X) \
Packet2l p2l_##NAME = reinterpret_cast<Packet2l>(vec_splat_s64(X))
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
Packet4i p4i_##NAME = pset1<Packet4i>(X)
#define _EIGEN_DECLARE_CONST_Packet2d(NAME,X) \
Packet2d p2d_##NAME = pset1<Packet2d>(X)
#define _EIGEN_DECLARE_CONST_Packet2l(NAME,X) \
Packet2l p2l_##NAME = pset1<Packet2l>(X)
// These constants are endian-agnostic
//static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0); //{ 0, 0, 0, 0,}
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE, 1); //{ 1, 1, 1, 1}
static _EIGEN_DECLARE_CONST_FAST_Packet2d(ZERO, 0);
static _EIGEN_DECLARE_CONST_FAST_Packet2l(ZERO, 0);
static _EIGEN_DECLARE_CONST_FAST_Packet2l(ONE, 1);
static Packet2d p2d_ONE = { 1.0, 1.0 };
static Packet2d p2d_ZERO_ = { -0.0, -0.0 };
static Packet4i p4i_COUNTDOWN = { 0, 1, 2, 3 };
static Packet2d p2d_COUNTDOWN = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet16uc>(p2d_ZERO), reinterpret_cast<Packet16uc>(p2d_ONE), 8));
static Packet16uc p16uc_PSET64_HI = { 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_DUPLICATE32_HI = { 0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7 };
// Mask alignment
#define _EIGEN_MASK_ALIGNMENT 0xfffffffffffffff0
#define _EIGEN_ALIGNED_PTR(x) ((ptrdiff_t)(x) & _EIGEN_MASK_ALIGNMENT)
// Handle endianness properly while loading constants
// Define global static constants:
static Packet16uc p16uc_FORWARD = { 0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15 };
static Packet16uc p16uc_REVERSE32 = { 12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3 };
static Packet16uc p16uc_REVERSE64 = { 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_PSET32_WODD = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
static Packet16uc p16uc_PSET32_WEVEN = vec_sld(p16uc_DUPLICATE32_HI, (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
/*static Packet16uc p16uc_HALF64_0_16 = vec_sld((Packet16uc)p4i_ZERO, vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 3), 8); //{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16};
static Packet16uc p16uc_PSET64_HI = (Packet16uc) vec_mergeh((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };*/
static Packet16uc p16uc_PSET64_LO = (Packet16uc) vec_mergel((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
/*static Packet16uc p16uc_TRANSPOSE64_HI = vec_add(p16uc_PSET64_HI, p16uc_HALF64_0_16); //{ 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
static Packet16uc p16uc_TRANSPOSE64_LO = vec_add(p16uc_PSET64_LO, p16uc_HALF64_0_16); //{ 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};*/
static Packet16uc p16uc_TRANSPOSE64_HI = { 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
static Packet16uc p16uc_TRANSPOSE64_LO = { 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};
//static Packet16uc p16uc_COMPLEX32_REV = vec_sld(p16uc_REVERSE32, p16uc_REVERSE32, 8); //{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 };
//static Packet16uc p16uc_COMPLEX32_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8); //{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC
#define EIGEN_ZVECTOR_PREFETCH(ADDR) __builtin_prefetch(ADDR);
#else
#define EIGEN_ZVECTOR_PREFETCH(ADDR) asm( " pfd [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
#endif
template<> struct packet_traits<int> : default_packet_traits
{
typedef Packet4i type;
typedef Packet4i half;
enum {
// FIXME check the Has*
Vectorizable = 1,
AlignedOnScalar = 1,
size = 4,
HasHalfPacket = 0,
// FIXME check the Has*
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasBlend = 1
};
};
template<> struct packet_traits<double> : default_packet_traits
{
typedef Packet2d type;
typedef Packet2d half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=2,
HasHalfPacket = 1,
// FIXME check the Has*
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasMin = 1,
HasMax = 1,
HasAbs = 1,
HasSin = 0,
HasCos = 0,
HasLog = 0,
HasExp = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasRound = 1,
HasFloor = 1,
HasCeil = 1,
HasNegate = 1,
HasBlend = 1
};
};
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4, alignment=Aligned16}; typedef Packet4i half; };
template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2, alignment=Aligned16}; typedef Packet2d half; };
inline std::ostream & operator <<(std::ostream & s, const Packet4i & v)
{
Packet vt;
vt.v4i = v;
s << vt.i[0] << ", " << vt.i[1] << ", " << vt.i[2] << ", " << vt.i[3];
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet4ui & v)
{
Packet vt;
vt.v4ui = v;
s << vt.ui[0] << ", " << vt.ui[1] << ", " << vt.ui[2] << ", " << vt.ui[3];
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet2l & v)
{
Packet vt;
vt.v2l = v;
s << vt.l[0] << ", " << vt.l[1];
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet2ul & v)
{
Packet vt;
vt.v2ul = v;
s << vt.ul[0] << ", " << vt.ul[1] ;
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet2d & v)
{
Packet vt;
vt.v2d = v;
s << vt.d[0] << ", " << vt.d[1];
return s;
}
template<int Offset>
struct palign_impl<Offset,Packet4i>
{
static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
{
switch (Offset % 4) {
case 1:
first = vec_sld(first, second, 4); break;
case 2:
first = vec_sld(first, second, 8); break;
case 3:
first = vec_sld(first, second, 12); break;
}
}
};
template<int Offset>
struct palign_impl<Offset,Packet2d>
{
static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second)
{
if (Offset == 1)
first = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(first), reinterpret_cast<Packet4i>(second), 8));
}
};
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_LOAD
Packet *vfrom;
vfrom = (Packet *) from;
return vfrom->v4i;
}
template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_LOAD
Packet *vfrom;
vfrom = (Packet *) from;
return vfrom->v2d;
}
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_STORE
Packet *vto;
vto = (Packet *) to;
vto->v4i = from;
}
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_STORE
Packet *vto;
vto = (Packet *) to;
vto->v2d = from;
}
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from)
{
return vec_splats(from);
}
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) {
return vec_splats(from);
}
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet4i>(const int *a,
Packet4i& a0, Packet4i& a1, Packet4i& a2, Packet4i& a3)
{
a3 = pload<Packet4i>(a);
a0 = vec_splat(a3, 0);
a1 = vec_splat(a3, 1);
a2 = vec_splat(a3, 2);
a3 = vec_splat(a3, 3);
}
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet2d>(const double *a,
Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3)
{
a1 = pload<Packet2d>(a);
a0 = vec_splat(a1, 0);
a1 = vec_splat(a1, 1);
a3 = pload<Packet2d>(a+2);
a2 = vec_splat(a3, 0);
a3 = vec_splat(a3, 1);
}
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, Index stride)
{
int EIGEN_ALIGN16 ai[4];
ai[0] = from[0*stride];
ai[1] = from[1*stride];
ai[2] = from[2*stride];
ai[3] = from[3*stride];
return pload<Packet4i>(ai);
}
template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, Index stride)
{
double EIGEN_ALIGN16 af[2];
af[0] = from[0*stride];
af[1] = from[1*stride];
return pload<Packet2d>(af);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, Index stride)
{
int EIGEN_ALIGN16 ai[4];
pstore<int>((int *)ai, from);
to[0*stride] = ai[0];
to[1*stride] = ai[1];
to[2*stride] = ai[2];
to[3*stride] = ai[3];
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, Index stride)
{
double EIGEN_ALIGN16 af[2];
pstore<double>(af, from);
to[0*stride] = af[0];
to[1*stride] = af[1];
}
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return (a + b); }
template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return (a + b); }
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return (a - b); }
template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return (a - b); }
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return (a * b); }
template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return (a * b); }
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& a, const Packet4i& b) { return (a / b); }
template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return (a / b); }
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return (-a); }
template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return (-a); }
template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd<Packet4i>(pmul<Packet4i>(a, b), c); }
template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vec_madd(a, b, c); }
template<> EIGEN_STRONG_INLINE Packet4i plset<Packet4i>(const int& a) { return padd<Packet4i>(pset1<Packet4i>(a), p4i_COUNTDOWN); }
template<> EIGEN_STRONG_INLINE Packet2d plset<Packet2d>(const double& a) { return padd<Packet2d>(pset1<Packet2d>(a), p2d_COUNTDOWN); }
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_min(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_min(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_max(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_max(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_and(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_and(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_or(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_or(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_xor(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_xor(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return pand<Packet4i>(a, vec_nor(b, b)); }
template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_and(a, vec_nor(b, b)); }
template<> EIGEN_STRONG_INLINE Packet2d pround<Packet2d>(const Packet2d& a) { return vec_round(a); }
template<> EIGEN_STRONG_INLINE Packet2d pceil<Packet2d>(const Packet2d& a) { return vec_ceil(a); }
template<> EIGEN_STRONG_INLINE Packet2d pfloor<Packet2d>(const Packet2d& a) { return vec_floor(a); }
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) { return pload<Packet4i>(from); }
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) { return pload<Packet2d>(from); }
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
{
Packet4i p = pload<Packet4i>(from);
return vec_perm(p, p, p16uc_DUPLICATE32_HI);
}
template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
{
Packet2d p = pload<Packet2d>(from);
return vec_perm(p, p, p16uc_PSET64_HI);
}
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { pstore<int>(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) { pstore<double>(to, from); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { EIGEN_ZVECTOR_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { EIGEN_ZVECTOR_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; pstore(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double EIGEN_ALIGN16 x[2]; pstore(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a)
{
return reinterpret_cast<Packet4i>(vec_perm(reinterpret_cast<Packet16uc>(a), reinterpret_cast<Packet16uc>(a), p16uc_REVERSE32));
}
template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a)
{
return reinterpret_cast<Packet2d>(vec_perm(reinterpret_cast<Packet16uc>(a), reinterpret_cast<Packet16uc>(a), p16uc_REVERSE64));
}
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vec_abs(a); }
template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vec_abs(a); }
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
Packet4i b, sum;
b = vec_sld(a, a, 8);
sum = padd<Packet4i>(a, b);
b = vec_sld(sum, sum, 4);
sum = padd<Packet4i>(sum, b);
return pfirst(sum);
}
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a)
{
Packet2d b, sum;
b = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(a), reinterpret_cast<Packet4i>(a), 8));
sum = padd<Packet2d>(a, b);
return pfirst(sum);
}
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
{
Packet4i v[4], sum[4];
// It's easier and faster to transpose then add as columns
// Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
// Do the transpose, first set of moves
v[0] = vec_mergeh(vecs[0], vecs[2]);
v[1] = vec_mergel(vecs[0], vecs[2]);
v[2] = vec_mergeh(vecs[1], vecs[3]);
v[3] = vec_mergel(vecs[1], vecs[3]);
// Get the resulting vectors
sum[0] = vec_mergeh(v[0], v[2]);
sum[1] = vec_mergel(v[0], v[2]);
sum[2] = vec_mergeh(v[1], v[3]);
sum[3] = vec_mergel(v[1], v[3]);
// Now do the summation:
// Lines 0+1
sum[0] = padd<Packet4i>(sum[0], sum[1]);
// Lines 2+3
sum[1] = padd<Packet4i>(sum[2], sum[3]);
// Add the results
sum[0] = padd<Packet4i>(sum[0], sum[1]);
return sum[0];
}
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
{
Packet2d v[2], sum;
v[0] = padd<Packet2d>(vecs[0], reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(vecs[0]), reinterpret_cast<Packet4ui>(vecs[0]), 8)));
v[1] = padd<Packet2d>(vecs[1], reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(vecs[1]), reinterpret_cast<Packet4ui>(vecs[1]), 8)));
sum = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(v[0]), reinterpret_cast<Packet4ui>(v[1]), 8));
return sum;
}
// Other reduction functions:
// mul
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
{
EIGEN_ALIGN16 int aux[4];
pstore(aux, a);
return aux[0] * aux[1] * aux[2] * aux[3];
}
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a)
{
return pfirst(pmul(a, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(a), reinterpret_cast<Packet4i>(a), 8))));
}
// min
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
{
Packet4i b, res;
b = pmin<Packet4i>(a, vec_sld(a, a, 8));
res = pmin<Packet4i>(b, vec_sld(b, b, 4));
return pfirst(res);
}
template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a)
{
return pfirst(pmin<Packet2d>(a, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(a), reinterpret_cast<Packet4i>(a), 8))));
}
// max
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
{
Packet4i b, res;
b = pmax<Packet4i>(a, vec_sld(a, a, 8));
res = pmax<Packet4i>(b, vec_sld(b, b, 4));
return pfirst(res);
}
// max
template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a)
{
return pfirst(pmax<Packet2d>(a, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(a), reinterpret_cast<Packet4i>(a), 8))));
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4i,4>& kernel) {
Packet4i t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]);
Packet4i t1 = vec_mergel(kernel.packet[0], kernel.packet[2]);
Packet4i t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]);
Packet4i t3 = vec_mergel(kernel.packet[1], kernel.packet[3]);
kernel.packet[0] = vec_mergeh(t0, t2);
kernel.packet[1] = vec_mergel(t0, t2);
kernel.packet[2] = vec_mergeh(t1, t3);
kernel.packet[3] = vec_mergel(t1, t3);
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet2d,2>& kernel) {
Packet2d t0 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_HI);
Packet2d t1 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_LO);
kernel.packet[0] = t0;
kernel.packet[1] = t1;
}
template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) {
Packet4ui select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3] };
Packet4ui mask = vec_cmpeq(select, reinterpret_cast<Packet4ui>(p4i_ONE));
return vec_sel(elsePacket, thenPacket, mask);
}
template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) {
Packet2ul select = { ifPacket.select[0], ifPacket.select[1] };
Packet2ul mask = vec_cmpeq(select, reinterpret_cast<Packet2ul>(p2l_ONE));
return vec_sel(elsePacket, thenPacket, mask);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PACKET_MATH_ZVECTOR_H

View File

@ -302,7 +302,13 @@ macro(ei_testing_print_summary)
else()
message(STATUS "ARMv8 NEON: Using architecture defaults")
endif()
if(EIGEN_TEST_ZVECTOR)
message(STATUS "S390X ZVECTOR: ON")
else()
message(STATUS "S390X ZVECTOR: Using architecture defaults")
endif()
if(EIGEN_TEST_CXX11)
message(STATUS "C++11: ON")
else()
@ -446,6 +452,8 @@ macro(ei_get_cxxflags VAR)
set(${VAR} NEON)
elseif(EIGEN_TEST_NEON64)
set(${VAR} NEON)
elseif(EIGEN_TEST_ZVECTOR)
set(${VAR} ZVECTOR)
elseif(EIGEN_TEST_VSX)
set(${VAR} VSX)
elseif(EIGEN_TEST_ALTIVEC)

View File

@ -177,7 +177,7 @@ template<typename Scalar> void packetmath()
internal::pstore(data2, internal::pset1<Packet>(data1[offset]));
VERIFY(areApprox(ref, data2, PacketSize) && "internal::pset1");
}
{
for (int i=0; i<PacketSize*4; ++i)
ref[i] = data1[i/PacketSize];
@ -199,9 +199,9 @@ template<typename Scalar> void packetmath()
internal::pstore(data2+1*PacketSize, A1);
VERIFY(areApprox(ref, data2, 2*PacketSize) && "internal::pbroadcast2");
}
VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst");
if(PacketSize>1)
{
for(int offset=0;offset<4;++offset)
@ -212,6 +212,7 @@ template<typename Scalar> void packetmath()
VERIFY(areApprox(ref, data2, PacketSize) && "ploaddup");
}
}
if(PacketSize>2)
{
for(int offset=0;offset<4;++offset)
@ -227,7 +228,7 @@ template<typename Scalar> void packetmath()
for (int i=0; i<PacketSize; ++i)
ref[0] += data1[i];
VERIFY(isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux");
{
for (int i=0; i<4; ++i)
ref[i] = 0;
@ -431,6 +432,7 @@ template<typename Scalar> void packetmath_real()
VERIFY((numext::isnan)(data2[0]));
VERIFY((numext::isnan)(data2[1]));
#endif
}
}