mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-29 16:22:03 +08:00
feature 319: Add update and downdate functionality to LDLT
This commit is contained in:
parent
37f304a2e6
commit
2d7c3eea53
@ -48,7 +48,7 @@ template<typename MatrixType, int UpLo> struct LDLT_Traits;
|
||||
* on D also stabilizes the computation.
|
||||
*
|
||||
* Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
|
||||
* decomposition to determine whether a system of equations has a solution.
|
||||
* decomposition to determine whether a system of equations has a solution.
|
||||
*
|
||||
* \sa MatrixBase::ldlt(), class LLT
|
||||
*/
|
||||
@ -98,6 +98,11 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
||||
m_isInitialized(false)
|
||||
{}
|
||||
|
||||
/** \brief Constructor with decomposition
|
||||
*
|
||||
* This calculates the decomposition for the input \a matrix.
|
||||
* \sa LDLT(Index size)
|
||||
*/
|
||||
LDLT(const MatrixType& matrix)
|
||||
: m_matrix(matrix.rows(), matrix.cols()),
|
||||
m_transpositions(matrix.rows()),
|
||||
@ -107,6 +112,14 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
/** Clear any existing decomposition
|
||||
* \sa rankUpdate(w,sigma)
|
||||
*/
|
||||
void clear()
|
||||
{
|
||||
m_isInitialized = false;
|
||||
}
|
||||
|
||||
/** \returns a view of the upper triangular matrix U */
|
||||
inline typename Traits::MatrixU matrixU() const
|
||||
{
|
||||
@ -196,6 +209,9 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
||||
|
||||
LDLT& compute(const MatrixType& matrix);
|
||||
|
||||
template <typename Derived>
|
||||
LDLT& rankUpdate(const MatrixBase<Derived>& w,RealScalar alpha=1);
|
||||
|
||||
/** \returns the internal LDLT decomposition matrix
|
||||
*
|
||||
* TODO: document the storage layout
|
||||
@ -317,6 +333,74 @@ template<> struct ldlt_inplace<Lower>
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Reference for the algorithm: Davis and Hager, "Multiple Rank
|
||||
// Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
|
||||
// Trivial rearrangements of their computations (Timothy E. Holy)
|
||||
// allow their algorithm to work for rank-1 updates even if the
|
||||
// original matrix is not of full rank.
|
||||
// Here only rank-1 updates are implemented, to reduce the
|
||||
// requirement for intermediate storage and improve accuracy
|
||||
template<typename MatrixType, typename WDerived>
|
||||
static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, typename MatrixType::RealScalar sigma=1)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
typedef typename MatrixType::ColXpr ColXpr;
|
||||
typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
|
||||
typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
// typedef Matrix<Scalar,Dynamic,1> TempVectorType;
|
||||
typedef typename WDerived::SegmentReturnType TempVecSegment;
|
||||
|
||||
const Index size = mat.rows();
|
||||
|
||||
eigen_assert(mat.cols() == size && w.size()==size);
|
||||
|
||||
// Prepare the update
|
||||
RealScalar alpha,alphabar,temp,dtemp,gammatmp;
|
||||
Scalar wtemp,gamma;
|
||||
|
||||
alpha = 1;
|
||||
|
||||
// Apply the update
|
||||
for (Index j = 0; j < size; j++)
|
||||
{
|
||||
// Check for termination due to an original decomposition of low-rank
|
||||
if (!std::isfinite(alpha))
|
||||
break;
|
||||
|
||||
// Update the diagonal terms
|
||||
dtemp = real(mat.diagonal().coeff(j));
|
||||
wtemp = w.coeff(j);
|
||||
temp = sigma*real(wtemp*conj(wtemp));
|
||||
alphabar = alpha + temp/dtemp;
|
||||
gammatmp = dtemp*alpha + temp;
|
||||
if (gammatmp != 0)
|
||||
gamma = conj(wtemp)/gammatmp; // FIXME: guessing on conj here
|
||||
else
|
||||
gamma = 0;
|
||||
dtemp += temp/alpha;
|
||||
alpha = alphabar;
|
||||
mat.diagonal().coeffRef(j) = dtemp;
|
||||
|
||||
// Update the terms of L
|
||||
w.tail(size-j-1) -= wtemp*mat.col(j).tail(size-j-1);
|
||||
mat.col(j).tail(size-j-1) += (sigma*gamma)*w.tail(size-j-1);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
|
||||
static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, typename MatrixType::RealScalar sigma=1)
|
||||
{
|
||||
// Apply the permutation to the input w
|
||||
tmp = transpositions * w;
|
||||
|
||||
return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct ldlt_inplace<Upper>
|
||||
@ -327,6 +411,13 @@ template<> struct ldlt_inplace<Upper>
|
||||
Transpose<MatrixType> matt(mat);
|
||||
return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
|
||||
}
|
||||
|
||||
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
|
||||
static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, typename MatrixType::RealScalar sigma=1)
|
||||
{
|
||||
Transpose<MatrixType> matt(mat);
|
||||
return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w, sigma);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
|
||||
@ -367,6 +458,35 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
|
||||
* \param w a vector to be incorporated into the decomposition.
|
||||
* \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
|
||||
* \sa clear()
|
||||
*/
|
||||
template<typename MatrixType, int _UpLo>
|
||||
template<typename Derived>
|
||||
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w,typename NumTraits<typename MatrixType::Scalar>::Real sigma)
|
||||
{
|
||||
const Index size = w.rows();
|
||||
if (m_isInitialized)
|
||||
eigen_assert(m_matrix.rows()==size);
|
||||
else
|
||||
{
|
||||
m_matrix.resize(size,size);
|
||||
m_matrix.setZero();
|
||||
m_transpositions.resize(size);
|
||||
for (Index i = 0; i < size; i++)
|
||||
m_transpositions.coeffRef(i) = i;
|
||||
m_temporary.resize(size);
|
||||
m_sign = sigma;
|
||||
m_isInitialized = true;
|
||||
}
|
||||
|
||||
internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
template<typename _MatrixType, int _UpLo, typename Rhs>
|
||||
struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
|
||||
|
@ -155,7 +155,7 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
||||
m2.noalias() -= symmLo.template selfadjointView<Lower>().llt().solve(matB);
|
||||
VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB));
|
||||
|
||||
// Cholesky update/downdate
|
||||
// LLT update/downdate
|
||||
{
|
||||
MatrixType symmLo = symm.template triangularView<Lower>();
|
||||
MatrixType symmUp = symm.template triangularView<Upper>();
|
||||
@ -173,6 +173,23 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
|
||||
VERIFY_IS_APPROX(symmCpy, cholup.reconstructedMatrix());
|
||||
}
|
||||
|
||||
// LDLT update/downdate
|
||||
{
|
||||
MatrixType symmLo = symm.template triangularView<Lower>();
|
||||
MatrixType symmUp = symm.template triangularView<Upper>();
|
||||
|
||||
VectorType vec = VectorType::Random(rows);
|
||||
|
||||
MatrixType symmCpy = symm + vec * vec.adjoint();
|
||||
|
||||
LDLT<MatrixType,Lower> chollo(symmLo);
|
||||
chollo.rankUpdate(vec);
|
||||
VERIFY_IS_APPROX(symmCpy, chollo.reconstructedMatrix());
|
||||
|
||||
LDLT<MatrixType,Upper> cholup(symmUp);
|
||||
cholup.rankUpdate(vec);
|
||||
VERIFY_IS_APPROX(symmCpy, cholup.reconstructedMatrix());
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MatrixType> void cholesky_cplx(const MatrixType& m)
|
||||
|
Loading…
x
Reference in New Issue
Block a user