mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 01:29:35 +08:00
bug #1557: fix RealSchur and EigenSolver for matrices with only zeros on the diagonal.
This commit is contained in:
parent
72c0bbe2bd
commit
2de8da70fd
@ -236,7 +236,7 @@ template<typename _MatrixType> class RealSchur
|
||||
typedef Matrix<Scalar,3,1> Vector3s;
|
||||
|
||||
Scalar computeNormOfT();
|
||||
Index findSmallSubdiagEntry(Index iu);
|
||||
Index findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero);
|
||||
void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
|
||||
void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
|
||||
void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
|
||||
@ -307,12 +307,16 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMa
|
||||
Index totalIter = 0; // iteration count for whole matrix
|
||||
Scalar exshift(0); // sum of exceptional shifts
|
||||
Scalar norm = computeNormOfT();
|
||||
// sub-diagonal entries smaller than considerAsZero will be treated as zero.
|
||||
// We use eps^2 to enable more precision in small eigenvalues.
|
||||
Scalar considerAsZero = numext::maxi( norm * numext::abs2(NumTraits<Scalar>::epsilon()),
|
||||
(std::numeric_limits<Scalar>::min)() );
|
||||
|
||||
if(norm!=Scalar(0))
|
||||
{
|
||||
while (iu >= 0)
|
||||
{
|
||||
Index il = findSmallSubdiagEntry(iu);
|
||||
Index il = findSmallSubdiagEntry(iu,considerAsZero);
|
||||
|
||||
// Check for convergence
|
||||
if (il == iu) // One root found
|
||||
@ -369,14 +373,17 @@ inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
|
||||
|
||||
/** \internal Look for single small sub-diagonal element and returns its index */
|
||||
template<typename MatrixType>
|
||||
inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
|
||||
inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero)
|
||||
{
|
||||
using std::abs;
|
||||
Index res = iu;
|
||||
while (res > 0)
|
||||
{
|
||||
Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
|
||||
if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
|
||||
|
||||
s = numext::maxi(s * NumTraits<Scalar>::epsilon(), considerAsZero);
|
||||
|
||||
if (abs(m_matT.coeff(res,res-1)) <= s)
|
||||
break;
|
||||
res--;
|
||||
}
|
||||
|
@ -12,6 +12,21 @@
|
||||
#include <limits>
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
template<typename EigType,typename MatType>
|
||||
void check_eigensolver_for_given_mat(const EigType &eig, const MatType& a)
|
||||
{
|
||||
typedef typename NumTraits<typename MatType::Scalar>::Real RealScalar;
|
||||
typedef Matrix<RealScalar, MatType::RowsAtCompileTime, 1> RealVectorType;
|
||||
typedef typename std::complex<RealScalar> Complex;
|
||||
Index n = a.rows();
|
||||
VERIFY_IS_EQUAL(eig.info(), Success);
|
||||
VERIFY_IS_APPROX(a * eig.pseudoEigenvectors(), eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix());
|
||||
VERIFY_IS_APPROX(a.template cast<Complex>() * eig.eigenvectors(),
|
||||
eig.eigenvectors() * eig.eigenvalues().asDiagonal());
|
||||
VERIFY_IS_APPROX(eig.eigenvectors().colwise().norm(), RealVectorType::Ones(n).transpose());
|
||||
VERIFY_IS_APPROX(a.eigenvalues(), eig.eigenvalues());
|
||||
}
|
||||
|
||||
template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
{
|
||||
/* this test covers the following files:
|
||||
@ -22,8 +37,7 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
||||
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
||||
typedef typename std::complex<RealScalar> Complex;
|
||||
|
||||
MatrixType a = MatrixType::Random(rows,cols);
|
||||
MatrixType a1 = MatrixType::Random(rows,cols);
|
||||
@ -36,12 +50,7 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||||
(ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
|
||||
|
||||
EigenSolver<MatrixType> ei1(a);
|
||||
VERIFY_IS_EQUAL(ei1.info(), Success);
|
||||
VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
|
||||
VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
|
||||
ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
||||
VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose());
|
||||
VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
|
||||
CALL_SUBTEST( check_eigensolver_for_given_mat(ei1,a) );
|
||||
|
||||
EigenSolver<MatrixType> ei2;
|
||||
ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
|
||||
@ -100,6 +109,19 @@ template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m
|
||||
VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
|
||||
}
|
||||
|
||||
|
||||
template<typename CoeffType>
|
||||
Matrix<typename CoeffType::Scalar,Dynamic,Dynamic>
|
||||
make_companion(const CoeffType& coeffs)
|
||||
{
|
||||
Index n = coeffs.size()-1;
|
||||
Matrix<typename CoeffType::Scalar,Dynamic,Dynamic> res(n,n);
|
||||
res.setZero();
|
||||
res.row(0) = -coeffs.tail(n) / coeffs(0);
|
||||
res.diagonal(-1).setOnes();
|
||||
return res;
|
||||
}
|
||||
|
||||
template<int>
|
||||
void eigensolver_generic_extra()
|
||||
{
|
||||
@ -126,6 +148,42 @@ void eigensolver_generic_extra()
|
||||
VERIFY_IS_APPROX((a * eig.eigenvectors()).norm()+1., 1.);
|
||||
VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm()+1., 1.);
|
||||
}
|
||||
|
||||
// regression test for bug 933
|
||||
{
|
||||
{
|
||||
VectorXd coeffs(5); coeffs << 1, -3, -175, -225, 2250;
|
||||
MatrixXd C = make_companion(coeffs);
|
||||
EigenSolver<MatrixXd> eig(C);
|
||||
CALL_SUBTEST( check_eigensolver_for_given_mat(eig,C) );
|
||||
}
|
||||
{
|
||||
// this test is tricky because it requires high accuracy in smallest eigenvalues
|
||||
VectorXd coeffs(5); coeffs << 6.154671e-15, -1.003870e-10, -9.819570e-01, 3.995715e+03, 2.211511e+08;
|
||||
MatrixXd C = make_companion(coeffs);
|
||||
EigenSolver<MatrixXd> eig(C);
|
||||
CALL_SUBTEST( check_eigensolver_for_given_mat(eig,C) );
|
||||
Index n = C.rows();
|
||||
for(Index i=0;i<n;++i)
|
||||
{
|
||||
typedef std::complex<double> Complex;
|
||||
MatrixXcd ac = C.cast<Complex>();
|
||||
ac.diagonal().array() -= eig.eigenvalues()(i);
|
||||
VectorXd sv = ac.jacobiSvd().singularValues();
|
||||
// comparing to sv(0) is not enough here to catch the "bug",
|
||||
// the hard-coded 1.0 is important!
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(sv(n-1), 1.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
// regression test for bug 1557
|
||||
{
|
||||
// this test is interesting because it contains zeros on the diagonal.
|
||||
MatrixXd A_bug1557(3,3);
|
||||
A_bug1557 << 0, 0, 0, 1, 0, 0.5887907064808635127, 0, 1, 0;
|
||||
EigenSolver<MatrixXd> eig(A_bug1557);
|
||||
CALL_SUBTEST( check_eigensolver_for_given_mat(eig,A_bug1557) );
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DECLARE_TEST(eigensolver_generic)
|
||||
|
Loading…
x
Reference in New Issue
Block a user