mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-16 14:49:39 +08:00
fully vectorize DiagonalProduct
(it used to be partially vectorized and that had been lost in the big changes from the previous commit)
This commit is contained in:
parent
6809f7b1cd
commit
2de9b7f537
@ -26,8 +26,8 @@
|
||||
#ifndef EIGEN_DIAGONALPRODUCT_H
|
||||
#define EIGEN_DIAGONALPRODUCT_H
|
||||
|
||||
template<typename MatrixType, typename DiagonalType, int Order>
|
||||
struct ei_traits<DiagonalProduct<MatrixType, DiagonalType, Order> >
|
||||
template<typename MatrixType, typename DiagonalType, int ProductOrder>
|
||||
struct ei_traits<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
enum {
|
||||
@ -35,14 +35,15 @@ struct ei_traits<DiagonalProduct<MatrixType, DiagonalType, Order> >
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
|
||||
Flags = (unsigned int)(MatrixType::Flags) & HereditaryBits,
|
||||
Flags = (HereditaryBits & (unsigned int)(MatrixType::Flags))
|
||||
| (PacketAccessBit & (unsigned int)(MatrixType::Flags) & (unsigned int)(DiagonalType::DiagonalVectorType::Flags)),
|
||||
CoeffReadCost = NumTraits<Scalar>::MulCost + MatrixType::CoeffReadCost + DiagonalType::DiagonalVectorType::CoeffReadCost
|
||||
};
|
||||
};
|
||||
|
||||
template<typename MatrixType, typename DiagonalType, int Order>
|
||||
template<typename MatrixType, typename DiagonalType, int ProductOrder>
|
||||
class DiagonalProduct : ei_no_assignment_operator,
|
||||
public MatrixBase<DiagonalProduct<MatrixType, DiagonalType, Order> >
|
||||
public MatrixBase<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
|
||||
{
|
||||
public:
|
||||
|
||||
@ -51,7 +52,7 @@ class DiagonalProduct : ei_no_assignment_operator,
|
||||
inline DiagonalProduct(const MatrixType& matrix, const DiagonalType& diagonal)
|
||||
: m_matrix(matrix), m_diagonal(diagonal)
|
||||
{
|
||||
ei_assert(diagonal.diagonal().size() == (Order == DiagonalOnTheLeft ? matrix.rows() : matrix.cols()));
|
||||
ei_assert(diagonal.diagonal().size() == (ProductOrder == DiagonalOnTheLeft ? matrix.rows() : matrix.cols()));
|
||||
}
|
||||
|
||||
inline int rows() const { return m_matrix.rows(); }
|
||||
@ -59,7 +60,30 @@ class DiagonalProduct : ei_no_assignment_operator,
|
||||
|
||||
const Scalar coeff(int row, int col) const
|
||||
{
|
||||
return m_diagonal.diagonal().coeff(Order == DiagonalOnTheLeft ? row : col) * m_matrix.coeff(row, col);
|
||||
return m_diagonal.diagonal().coeff(ProductOrder == DiagonalOnTheLeft ? row : col) * m_matrix.coeff(row, col);
|
||||
}
|
||||
|
||||
template<int LoadMode>
|
||||
EIGEN_STRONG_INLINE PacketScalar packet(int row, int col) const
|
||||
{
|
||||
enum {
|
||||
StorageOrder = Flags & RowMajorBit ? RowMajor : ColMajor,
|
||||
InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
|
||||
DiagonalVectorPacketLoadMode = (LoadMode == Aligned && ((InnerSize%16) == 0)) ? Aligned : Unaligned
|
||||
};
|
||||
const int indexInDiagonalVector = ProductOrder == DiagonalOnTheLeft ? row : col;
|
||||
|
||||
if((int(StorageOrder) == RowMajor && int(ProductOrder) == DiagonalOnTheLeft)
|
||||
||(int(StorageOrder) == ColMajor && int(ProductOrder) == DiagonalOnTheRight))
|
||||
{
|
||||
return ei_pmul(m_matrix.template packet<LoadMode>(row, col),
|
||||
ei_pset1(m_diagonal.diagonal().coeff(indexInDiagonalVector)));
|
||||
}
|
||||
else
|
||||
{
|
||||
return ei_pmul(m_matrix.template packet<LoadMode>(row, col),
|
||||
m_diagonal.diagonal().template packet<DiagonalVectorPacketLoadMode>(indexInDiagonalVector));
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
|
@ -53,7 +53,7 @@ template<typename Lhs, typename Rhs, int ProductMode> class Product;
|
||||
template<typename Derived> class DiagonalBase;
|
||||
template<typename _DiagonalVectorType> class DiagonalWrapper;
|
||||
template<typename _Scalar, int _Size> class DiagonalMatrix;
|
||||
template<typename MatrixType, typename DiagonalType, int Order> class DiagonalProduct;
|
||||
template<typename MatrixType, typename DiagonalType, int ProductOrder> class DiagonalProduct;
|
||||
template<typename MatrixType, int Index> class Diagonal;
|
||||
|
||||
template<typename MatrixType, int PacketAccess = AsRequested> class Map;
|
||||
|
@ -23,7 +23,7 @@
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
using namespace std;
|
||||
template<typename MatrixType> void diagonalmatrices(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
@ -34,7 +34,7 @@ template<typename MatrixType> void diagonalmatrices(const MatrixType& m)
|
||||
typedef Matrix<Scalar, Rows, Rows> SquareMatrixType;
|
||||
typedef DiagonalMatrix<Scalar, Rows> LeftDiagonalMatrix;
|
||||
typedef DiagonalMatrix<Scalar, Cols> RightDiagonalMatrix;
|
||||
|
||||
typedef Matrix<Scalar, Rows==Dynamic?Dynamic:2*Rows, Cols==Dynamic?Dynamic:2*Cols> BigMatrix;
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
@ -46,20 +46,7 @@ template<typename MatrixType> void diagonalmatrices(const MatrixType& m)
|
||||
rv2 = RowVectorType::Random(cols);
|
||||
LeftDiagonalMatrix ldm1(v1), ldm2(v2);
|
||||
RightDiagonalMatrix rdm1(rv1), rdm2(rv2);
|
||||
|
||||
int i = ei_random<int>(0, rows-1);
|
||||
int j = ei_random<int>(0, cols-1);
|
||||
|
||||
VERIFY_IS_APPROX( ((ldm1 * m1)(i,j)) , ldm1.diagonal()(i) * m1(i,j) );
|
||||
VERIFY_IS_APPROX( ((ldm1 * (m1+m2))(i,j)) , ldm1.diagonal()(i) * (m1+m2)(i,j) );
|
||||
VERIFY_IS_APPROX( ((m1 * rdm1)(i,j)) , rdm1.diagonal()(j) * m1(i,j) );
|
||||
VERIFY_IS_APPROX( ((v1.asDiagonal() * m1)(i,j)) , v1(i) * m1(i,j) );
|
||||
VERIFY_IS_APPROX( ((m1 * rv1.asDiagonal())(i,j)) , rv1(j) * m1(i,j) );
|
||||
VERIFY_IS_APPROX( (((v1+v2).asDiagonal() * m1)(i,j)) , (v1+v2)(i) * m1(i,j) );
|
||||
VERIFY_IS_APPROX( (((v1+v2).asDiagonal() * (m1+m2))(i,j)) , (v1+v2)(i) * (m1+m2)(i,j) );
|
||||
VERIFY_IS_APPROX( ((m1 * (rv1+rv2).asDiagonal())(i,j)) , (rv1+rv2)(j) * m1(i,j) );
|
||||
VERIFY_IS_APPROX( (((m1+m2) * (rv1+rv2).asDiagonal())(i,j)) , (rv1+rv2)(j) * (m1+m2)(i,j) );
|
||||
|
||||
|
||||
SquareMatrixType sq_m1 (v1.asDiagonal());
|
||||
VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix());
|
||||
sq_m1 = v1.asDiagonal();
|
||||
@ -77,6 +64,32 @@ template<typename MatrixType> void diagonalmatrices(const MatrixType& m)
|
||||
VERIFY_IS_APPROX(sq_m1, ldm1.toDenseMatrix());
|
||||
sq_m1.transpose() = ldm1;
|
||||
VERIFY_IS_APPROX(sq_m1, ldm1.toDenseMatrix());
|
||||
|
||||
int i = ei_random<int>(0, rows-1);
|
||||
int j = ei_random<int>(0, cols-1);
|
||||
|
||||
VERIFY_IS_APPROX( ((ldm1 * m1)(i,j)) , ldm1.diagonal()(i) * m1(i,j) );
|
||||
VERIFY_IS_APPROX( ((ldm1 * (m1+m2))(i,j)) , ldm1.diagonal()(i) * (m1+m2)(i,j) );
|
||||
VERIFY_IS_APPROX( ((m1 * rdm1)(i,j)) , rdm1.diagonal()(j) * m1(i,j) );
|
||||
VERIFY_IS_APPROX( ((v1.asDiagonal() * m1)(i,j)) , v1(i) * m1(i,j) );
|
||||
VERIFY_IS_APPROX( ((m1 * rv1.asDiagonal())(i,j)) , rv1(j) * m1(i,j) );
|
||||
VERIFY_IS_APPROX( (((v1+v2).asDiagonal() * m1)(i,j)) , (v1+v2)(i) * m1(i,j) );
|
||||
VERIFY_IS_APPROX( (((v1+v2).asDiagonal() * (m1+m2))(i,j)) , (v1+v2)(i) * (m1+m2)(i,j) );
|
||||
VERIFY_IS_APPROX( ((m1 * (rv1+rv2).asDiagonal())(i,j)) , (rv1+rv2)(j) * m1(i,j) );
|
||||
VERIFY_IS_APPROX( (((m1+m2) * (rv1+rv2).asDiagonal())(i,j)) , (rv1+rv2)(j) * (m1+m2)(i,j) );
|
||||
|
||||
BigMatrix big;
|
||||
big.setZero(2*rows, 2*cols);
|
||||
|
||||
big.block(i,j,rows,cols) = m1;
|
||||
big.block(i,j,rows,cols) = v1.asDiagonal() * big.block(i,j,rows,cols);
|
||||
|
||||
VERIFY_IS_APPROX((big.block(i,j,rows,cols)) , v1.asDiagonal() * m1 );
|
||||
|
||||
big.block(i,j,rows,cols) = m1;
|
||||
big.block(i,j,rows,cols) = big.block(i,j,rows,cols) * rv1.asDiagonal();
|
||||
VERIFY_IS_APPROX((big.block(i,j,rows,cols)) , m1 * rv1.asDiagonal() );
|
||||
|
||||
}
|
||||
|
||||
void test_diagonalmatrices()
|
||||
|
Loading…
x
Reference in New Issue
Block a user