split SimplicialCholesky into SimplicialLLt and SimplicialLDLt classes and add specific factor access functions

This commit is contained in:
Gael Guennebaud 2011-10-09 21:45:55 +02:00
parent e1dec359ba
commit 2fc1b58cd2

View File

@ -68,10 +68,10 @@ enum SimplicialCholeskyMode {
SimplicialCholeskyLDLt
};
/** \brief A direct sparse Cholesky factorization
/** \brief A direct sparse Cholesky factorizations
*
* This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization.
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* These classes provide LL^T and LDL^T Cholesky factorizations of sparse matrices that are
* selfadjoint and positive definite. The factorization allows for solving A.X = B where
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
@ -79,53 +79,39 @@ enum SimplicialCholeskyMode {
* or Upper. Default is Lower.
*
*/
template<typename _MatrixType, int _UpLo = Lower>
class SimplicialCholesky
template<typename Derived>
class SimplicialCholeskyBase
{
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef typename internal::traits<Derived>::MatrixType MatrixType;
enum { UpLo = internal::traits<Derived>::UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
typedef Matrix<Scalar,MatrixType::ColsAtCompileTime,1> VectorType;
typedef Matrix<Scalar,Dynamic,1> VectorType;
public:
SimplicialCholesky()
: m_info(Success), m_isInitialized(false), m_LDLt(true)
SimplicialCholeskyBase()
: m_info(Success), m_isInitialized(false)
{}
SimplicialCholesky(const MatrixType& matrix)
: m_info(Success), m_isInitialized(false), m_LDLt(true)
SimplicialCholeskyBase(const MatrixType& matrix)
: m_info(Success), m_isInitialized(false)
{
compute(matrix);
}
~SimplicialCholesky()
~SimplicialCholeskyBase()
{
}
Derived& derived() { return *static_cast<Derived*>(this); }
const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Index cols() const { return m_matrix.cols(); }
inline Index rows() const { return m_matrix.rows(); }
SimplicialCholesky& setMode(SimplicialCholeskyMode mode)
{
switch(mode)
{
case SimplicialCholeskyLLt:
m_LDLt = false;
break;
case SimplicialCholeskyLDLt:
m_LDLt = true;
break;
default:
break;
}
return *this;
}
/** \brief Reports whether previous computation was successful.
*
@ -139,11 +125,11 @@ class SimplicialCholesky
}
/** Computes the sparse Cholesky decomposition of \a matrix */
SimplicialCholesky& compute(const MatrixType& matrix)
Derived& compute(const MatrixType& matrix)
{
analyzePattern(matrix);
factorize(matrix);
return *this;
derived().analyzePattern(matrix);
derived().factorize(matrix);
return derived();
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
@ -151,13 +137,13 @@ class SimplicialCholesky
* \sa compute()
*/
template<typename Rhs>
inline const internal::solve_retval<SimplicialCholesky, Rhs>
inline const internal::solve_retval<SimplicialCholeskyBase, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "SimplicialCholesky is not initialized.");
eigen_assert(m_isInitialized && "Simplicial LLt or LDLt is not initialized.");
eigen_assert(rows()==b.rows()
&& "SimplicialCholesky::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<SimplicialCholesky, Rhs>(*this, b.derived());
&& "SimplicialCholeskyBase::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<SimplicialCholeskyBase, Rhs>(*this, b.derived());
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
@ -174,23 +160,6 @@ class SimplicialCholesky
// return internal::sparse_solve_retval<SimplicialCholesky, Rhs>(*this, b.derived());
// }
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize()
*/
void analyzePattern(const MatrixType& a);
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
*
* \sa analyzePattern()
*/
void factorize(const MatrixType& a);
/** \returns the permutation P
* \sa permutationPinv() */
const PermutationMatrix<Dynamic,Dynamic,Index>& permutationP() const
@ -200,56 +169,9 @@ class SimplicialCholesky
* \sa permutationP() */
const PermutationMatrix<Dynamic,Dynamic,Index>& permutationPinv() const
{ return m_Pinv; }
#ifndef EIGEN_PARSED_BY_DOXYGEN
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal */
template<typename Rhs,typename Dest>
void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
eigen_assert(m_matrix.rows()==b.rows());
if(m_info!=Success)
return;
if(m_P.size()>0)
dest = m_Pinv * b;
else
dest = b;
if(m_LDLt)
{
if(m_matrix.nonZeros()>0) // otherwise L==I
m_matrix.template triangularView<UnitLower>().solveInPlace(dest);
dest = m_diag.asDiagonal().inverse() * dest;
if (m_matrix.nonZeros()>0) // otherwise L==I
m_matrix.adjoint().template triangularView<UnitUpper>().solveInPlace(dest);
}
else
{
if(m_matrix.nonZeros()>0) // otherwise L==I
m_matrix.template triangularView<Lower>().solveInPlace(dest);
if (m_matrix.nonZeros()>0) // otherwise L==I
m_matrix.adjoint().template triangularView<Upper>().solveInPlace(dest);
}
if(m_P.size()>0)
dest = m_P * dest;
}
/** \internal */
/*
template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex>
void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
{
// TODO
}
*/
#endif // EIGEN_PARSED_BY_DOXYGEN
template<typename Stream>
void dumpMemory(Stream& s)
{
@ -263,7 +185,51 @@ class SimplicialCholesky
s << " TOTAL: " << (total>> 20) << "Mb" << "\n";
}
/** \internal */
template<typename Rhs,typename Dest>
void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
eigen_assert(m_matrix.rows()==b.rows());
if(m_info!=Success)
return;
if(m_P.size()>0)
dest = m_Pinv * b;
else
dest = b;
if(m_matrix.nonZeros()>0) // otherwise L==I
derived().matrixL().solveInPlace(dest);
if(m_diag.size()>0)
dest = m_diag.asDiagonal().inverse() * dest;
if (m_matrix.nonZeros()>0) // otherwise I==I
derived().matrixU().solveInPlace(dest);
if(m_P.size()>0)
dest = m_P * dest;
}
/** \internal */
/*
template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex>
void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
{
// TODO
}
*/
#endif // EIGEN_PARSED_BY_DOXYGEN
protected:
template<bool DoLDLt>
void factorize(const MatrixType& a);
void analyzePattern(const MatrixType& a, bool doLDLt);
/** keeps off-diagonal entries; drops diagonal entries */
struct keep_diag {
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
@ -276,18 +242,337 @@ class SimplicialCholesky
bool m_isInitialized;
bool m_factorizationIsOk;
bool m_analysisIsOk;
bool m_LDLt;
CholMatrixType m_matrix;
VectorType m_diag; // the diagonal coefficients in case of a LDLt decomposition
VectorXi m_parent; // elimination tree
VectorType m_diag; // the diagonal coefficients (LDLt mode)
VectorXi m_parent; // elimination tree
VectorXi m_nonZerosPerCol;
PermutationMatrix<Dynamic,Dynamic,Index> m_P; // the permutation
PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // the inverse permutation
};
template<typename _MatrixType, int _UpLo = Lower> class SimplicialLLt;
template<typename _MatrixType, int _UpLo = Lower> class SimplicialLDLt;
template<typename _MatrixType, int _UpLo = Lower> class SimplicialCholesky;
namespace internal {
template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLt<_MatrixType,_UpLo> >
{
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar, ColMajor, Index> CholMatrixType;
typedef SparseTriangularView<CholMatrixType, Eigen::Lower> MatrixL;
typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::Upper> MatrixU;
inline static MatrixL getL(const MatrixType& m) { return m; }
inline static MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};
//template<typename _MatrixType> struct traits<SimplicialLLt<_MatrixType,Upper> >
//{
// typedef _MatrixType MatrixType;
// enum { UpLo = Upper };
// typedef typename MatrixType::Scalar Scalar;
// typedef typename MatrixType::Index Index;
// typedef SparseMatrix<Scalar, ColMajor, Index> CholMatrixType;
// typedef TriangularView<CholMatrixType, Eigen::Lower> MatrixL;
// typedef TriangularView<CholMatrixType, Eigen::Upper> MatrixU;
// inline static MatrixL getL(const MatrixType& m) { return m.adjoint(); }
// inline static MatrixU getU(const MatrixType& m) { return m; }
//};
template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLt<_MatrixType,_UpLo> >
{
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar, ColMajor, Index> CholMatrixType;
typedef SparseTriangularView<CholMatrixType, Eigen::UnitLower> MatrixL;
typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU;
inline static MatrixL getL(const MatrixType& m) { return m; }
inline static MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};
//template<typename _MatrixType> struct traits<SimplicialLDLt<_MatrixType,Upper> >
//{
// typedef _MatrixType MatrixType;
// enum { UpLo = Upper };
// typedef typename MatrixType::Scalar Scalar;
// typedef typename MatrixType::Index Index;
// typedef SparseMatrix<Scalar, ColMajor, Index> CholMatrixType;
// typedef TriangularView<CholMatrixType, Eigen::UnitLower> MatrixL;
// typedef TriangularView<CholMatrixType, Eigen::UnitUpper> MatrixU;
// inline static MatrixL getL(const MatrixType& m) { return m.adjoint(); }
// inline static MatrixU getU(const MatrixType& m) { return m; }
//};
template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_MatrixType,_UpLo> >
{
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
};
}
/** \class SimplicialLLt
* \brief A direct sparse LLt Cholesky factorizations
*
* This class provides a LL^T Cholesky factorizations of sparse matrices that are
* selfadjoint and positive definite. The factorization allows for solving A.X = B where
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \sa class SimplicialLDLt
*/
template<typename _MatrixType, int _UpLo>
void SimplicialCholesky<_MatrixType,_UpLo>::analyzePattern(const MatrixType& a)
class SimplicialLLt : public SimplicialCholeskyBase<SimplicialLLt<_MatrixType,_UpLo> >
{
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef SimplicialCholeskyBase<SimplicialLLt> Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
typedef Matrix<Scalar,Dynamic,1> VectorType;
typedef internal::traits<SimplicialLLt> Traits;
typedef typename Traits::MatrixL MatrixL;
typedef typename Traits::MatrixU MatrixU;
public:
SimplicialLLt() : Base() {}
SimplicialLLt(const MatrixType& matrix)
: Base(matrix) {}
inline const MatrixL matrixL() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial LLt not factorized");
return Traits::getL(Base::m_matrix);
}
inline const MatrixU matrixU() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial LLt not factorized");
return Traits::getU(Base::m_matrix);
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize()
*/
void analyzePattern(const MatrixType& a)
{
Base::analyzePattern(a, false);
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
*
* \sa analyzePattern()
*/
void factorize(const MatrixType& a)
{
Base::template factorize<false>(a);
}
};
/** \class SimplicialLDLt
* \brief A direct sparse LDLt Cholesky factorizations without square root.
*
* This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are
* selfadjoint and positive definite. The factorization allows for solving A.X = B where
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \sa class SimplicialLLt
*/
template<typename _MatrixType, int _UpLo>
class SimplicialLDLt : public SimplicialCholeskyBase<SimplicialLDLt<_MatrixType,_UpLo> >
{
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef SimplicialCholeskyBase<SimplicialLDLt> Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
typedef Matrix<Scalar,Dynamic,1> VectorType;
typedef internal::traits<SimplicialLDLt> Traits;
typedef typename Traits::MatrixL MatrixL;
typedef typename Traits::MatrixU MatrixU;
public:
SimplicialLDLt() : Base() {}
SimplicialLDLt(const MatrixType& matrix)
: Base(matrix) {}
inline const VectorType vectorD() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLt not factorized");
return Base::m_diag;
}
inline const MatrixL matrixL() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLt not factorized");
return Traits::getL(Base::m_matrix);
}
inline const MatrixU matrixU() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLt not factorized");
return Traits::getU(Base::m_matrix);
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize()
*/
void analyzePattern(const MatrixType& a)
{
Base::analyzePattern(a, true);
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
*
* \sa analyzePattern()
*/
void factorize(const MatrixType& a)
{
Base::template factorize<true>(a);
}
};
/** \class SimplicialCholesky
* \deprecated
* \sa class SimplicialLDLt, class SimplicialLLt
*/
template<typename _MatrixType, int _UpLo>
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo> >
{
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef SimplicialCholeskyBase<SimplicialCholesky> Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
typedef Matrix<Scalar,Dynamic,1> VectorType;
typedef internal::traits<SimplicialCholesky> Traits;
typedef internal::traits<SimplicialLDLt<MatrixType,UpLo> > LDLtTraits;
typedef internal::traits<SimplicialLLt<MatrixType,UpLo> > LLtTraits;
public:
SimplicialCholesky() : Base(), m_LDLt(true) {}
SimplicialCholesky(const MatrixType& matrix)
: Base(matrix), m_LDLt(true) {}
SimplicialCholesky& setMode(SimplicialCholeskyMode mode)
{
switch(mode)
{
case SimplicialCholeskyLLt:
m_LDLt = false;
break;
case SimplicialCholeskyLDLt:
m_LDLt = true;
break;
default:
break;
}
return *this;
}
inline const VectorType vectorD() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
return Base::m_diag;
}
inline const CholMatrixType rawMatrix() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
return Base::m_matrix;
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize()
*/
void analyzePattern(const MatrixType& a)
{
Base::analyzePattern(a, m_LDLt);
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
*
* \sa analyzePattern()
*/
void factorize(const MatrixType& a)
{
if(m_LDLt)
Base::template factorize<true>(a);
else
Base::template factorize<false>(a);
}
/** \internal */
template<typename Rhs,typename Dest>
void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
eigen_assert(Base::m_matrix.rows()==b.rows());
if(Base::m_info!=Success)
return;
if(Base::m_P.size()>0)
dest = Base::m_Pinv * b;
else
dest = b;
if(Base::m_matrix.nonZeros()>0) // otherwise L==I
{
if(m_LDLt)
LDLtTraits::getL(Base::m_matrix).solveInPlace(dest);
else
LLtTraits::getL(Base::m_matrix).solveInPlace(dest);
}
if(Base::m_diag.size()>0)
dest = Base::m_diag.asDiagonal().inverse() * dest;
if (Base::m_matrix.nonZeros()>0) // otherwise I==I
{
if(m_LDLt)
LDLtTraits::getU(Base::m_matrix).solveInPlace(dest);
else
LLtTraits::getU(Base::m_matrix).solveInPlace(dest);
}
if(Base::m_P.size()>0)
dest = Base::m_P * dest;
}
protected:
bool m_LDLt;
};
template<typename Derived>
void SimplicialCholeskyBase<Derived>::analyzePattern(const MatrixType& a, bool doLDLt)
{
eigen_assert(a.rows()==a.cols());
const Index size = a.rows();
@ -342,7 +627,7 @@ void SimplicialCholesky<_MatrixType,_UpLo>::analyzePattern(const MatrixType& a)
Index* Lp = m_matrix._outerIndexPtr();
Lp[0] = 0;
for(Index k = 0; k < size; ++k)
Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (m_LDLt ? 0 : 1);
Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLt ? 0 : 1);
m_matrix.resizeNonZeros(Lp[size]);
@ -353,8 +638,9 @@ void SimplicialCholesky<_MatrixType,_UpLo>::analyzePattern(const MatrixType& a)
}
template<typename _MatrixType, int _UpLo>
void SimplicialCholesky<_MatrixType,_UpLo>::factorize(const MatrixType& a)
template<typename Derived>
template<bool DoLDLt>
void SimplicialCholeskyBase<Derived>::factorize(const MatrixType& a)
{
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
eigen_assert(a.rows()==a.cols());
@ -374,7 +660,7 @@ void SimplicialCholesky<_MatrixType,_UpLo>::factorize(const MatrixType& a)
ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_Pinv);
bool ok = true;
m_diag.resize(m_LDLt ? size : 0);
m_diag.resize(DoLDLt ? size : 0);
for(Index k = 0; k < size; ++k)
{
@ -411,21 +697,21 @@ void SimplicialCholesky<_MatrixType,_UpLo>::factorize(const MatrixType& a)
/* the nonzero entry L(k,i) */
Scalar l_ki;
if(m_LDLt)
if(DoLDLt)
l_ki = yi / m_diag[i];
else
yi = l_ki = yi / Lx[Lp[i]];
Index p2 = Lp[i] + m_nonZerosPerCol[i];
Index p;
for(p = Lp[i] + (m_LDLt ? 0 : 1); p < p2; ++p)
for(p = Lp[i] + (DoLDLt ? 0 : 1); p < p2; ++p)
y[Li[p]] -= internal::conj(Lx[p]) * yi;
d -= l_ki * internal::conj(yi);
Li[p] = k; /* store L(k,i) in column form of L */
Lx[p] = l_ki;
++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */
}
if(m_LDLt)
if(DoLDLt)
m_diag[k] = d;
else
{
@ -446,29 +732,29 @@ void SimplicialCholesky<_MatrixType,_UpLo>::factorize(const MatrixType& a)
namespace internal {
template<typename _MatrixType, int _UpLo, typename Rhs>
struct solve_retval<SimplicialCholesky<_MatrixType,_UpLo>, Rhs>
: solve_retval_base<SimplicialCholesky<_MatrixType,_UpLo>, Rhs>
template<typename Derived, typename Rhs>
struct solve_retval<SimplicialCholeskyBase<Derived>, Rhs>
: solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs>
{
typedef SimplicialCholesky<_MatrixType,_UpLo> Dec;
typedef SimplicialCholeskyBase<Derived> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
dec().derived()._solve(rhs(),dst);
}
};
template<typename _MatrixType, int _UpLo, typename Rhs>
struct sparse_solve_retval<SimplicialCholesky<_MatrixType,_UpLo>, Rhs>
: sparse_solve_retval_base<SimplicialCholesky<_MatrixType,_UpLo>, Rhs>
template<typename Derived, typename Rhs>
struct sparse_solve_retval<SimplicialCholeskyBase<Derived>, Rhs>
: sparse_solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs>
{
typedef SimplicialCholesky<_MatrixType,_UpLo> Dec;
typedef SimplicialCholeskyBase<Derived> Dec;
EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
dec().derived()._solve(rhs(),dst);
}
};