scalar forward FFT optimized for even size, converts to cpx for odd

This commit is contained in:
Mark Borgerding 2009-05-23 12:50:07 -04:00
parent 9c0fcd0f62
commit 3047988172
2 changed files with 97 additions and 69 deletions

View File

@ -24,6 +24,7 @@
#include <complex> #include <complex>
#include <vector> #include <vector>
#include <iostream>
namespace Eigen { namespace Eigen {
@ -39,51 +40,54 @@ namespace Eigen {
{ {
prepare(nfft,false); prepare(nfft,false);
work(0, dst, src, 1,1); work(0, dst, src, 1,1);
scale(dst);
} }
// real-to-complex forward FFT
// perform two FFTs of src even and src odd
// then twiddle to recombine them into the half-spectrum format
// then fill in the conjugate symmetric half
void fwd( Complex * dst,const Scalar * src,int nfft) void fwd( Complex * dst,const Scalar * src,int nfft)
{ {
if ( nfft&1 ) { if ( nfft&1 ) {
// use generic mode for odd // use generic mode for odd
prepare(nfft,false); prepare(nfft,false);
work(0, dst, src, 1,1); work(0, dst, src, 1,1);
scale(dst);
}else{ }else{
int ncfft = nfft>>1; int ncfft = nfft>>1;
// use optimized mode for even real // use optimized mode for even real
prepare(nfft,false); fwd( dst, reinterpret_cast<const Complex*> (src),ncfft);
work(0,dst, reinterpret_cast<const Complex*> (src),2,1); make_real_twiddles(nfft);
std::cerr << "dst[0] = " << dst[0] << "\n";
Complex dc = dst[0].real() + dst[0].imag(); Complex dc = dst[0].real() + dst[0].imag();
Complex nyquist = dst[0].real() - dst[0].imag(); Complex nyquist = dst[0].real() - dst[0].imag();
int k; int k;
for ( k=1;k <= ncfft/2 ; ++k ) { #if 0
/** using namespace std;
fpk = st->tmpbuf[k]; cerr << "desired:\n";
fpnk.r = st->tmpbuf[ncfft-k].r; for ( k=1;k <= (ncfft>>1) ; ++k ) {
fpnk.i = - st->tmpbuf[ncfft-k].i; Complex x = exp( Complex(0,-3.14159265358979323846264338327 * ((double) (k) / ncfft + .5) ) );
cerr << k << " " << x << "angle(x):" << arg(x) << "\n";
C_ADD( f1k, fpk , fpnk ); }
C_SUB( f2k, fpk , fpnk ); dc=0;
C_MUL( tw , f2k , st->super_twiddles[k-1]); cerr << "twiddles:\n";
for (k=0;k<ncfft;++k) {
freqdata[k].r = HALF_OF(f1k.r + tw.r); Complex x = m_twiddles[k];
freqdata[k].i = HALF_OF(f1k.i + tw.i); cerr << k << " " << x << "angle(-x):" << arg(-x) << "\n";
freqdata[ncfft-k].r = HALF_OF(f1k.r - tw.r); }
freqdata[ncfft-k].i = HALF_OF(tw.i - f1k.i); #endif
*/ for ( k=1;k <= (ncfft>>1) ; ++k ) {
Complex fpk = dst[k]; Complex fpk = dst[k];
Complex fpnk = conj(dst[ncfft-k]); Complex fpnk = conj(dst[ncfft-k]);
Complex f1k = fpk + fpnk; Complex f1k = fpk + fpnk;
Complex f2k = fpnk - fpk; Complex f2k = fpk - fpnk;
//Complex tw = f2k * exp( Complex(0,-3.14159265358979323846264338327 * ((double)k / ncfft + 1) ) ); // TODO repalce this with index into twiddles //Complex tw = f2k * exp( Complex(0,-3.14159265358979323846264338327 * ((double) (k) / ncfft + .5) ) );
Complex tw = f2k * m_twiddles[2*k];; Complex tw= f2k * m_realTwiddles[k-1];
dst[k] = (f1k + tw) * Scalar(.5); dst[k] = (f1k + tw) * Scalar(.5);
dst[ncfft-k] = conj(f1k -tw)*Scalar(.5); dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
} }
// place conjugate-symmetric half at the end for completeness // place conjugate-symmetric half at the end for completeness
// TODO: make this configurable ( opt-out ) // TODO: make this configurable ( opt-out )
for ( k=1;k < ncfft ; ++k ) for ( k=1;k < ncfft ; ++k )
@ -98,55 +102,74 @@ namespace Eigen {
{ {
prepare(nfft,true); prepare(nfft,true);
work(0, dst, src, 1,1); work(0, dst, src, 1,1);
scale(dst); scale(dst, Scalar(1)/m_nfft );
} }
void prepare(int nfft,bool inverse) void prepare(int nfft,bool inverse)
{ {
if (m_nfft == nfft) { make_twiddles(nfft,inverse);
// reuse the twiddles, conjugate if necessary factorize(nfft);
if (inverse != m_inverse)
for (int i=0;i<nfft;++i)
m_twiddles[i] = conj( m_twiddles[i] );
m_inverse = inverse;
return;
}
m_nfft = nfft;
m_inverse = inverse;
m_twiddles.resize(nfft);
Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
for (int i=0;i<nfft;++i)
m_twiddles[i] = exp( Complex(0,i*phinc) );
m_stageRadix.resize(0);
m_stageRemainder.resize(0);
//factorize
//start factoring out 4's, then 2's, then 3,5,7,9,...
int n= nfft;
int p=4;
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p*p>n)
p=n;// no more factors
}
n /= p;
m_stageRadix.push_back(p);
m_stageRemainder.push_back(n);
}while(n>1);
} }
void scale(Complex *dst) void make_real_twiddles(int nfft)
{
int ncfft2 = nfft>>2;
if ( m_realTwiddles.size() != ncfft2) {
m_realTwiddles.resize(ncfft2);
int ncfft= nfft>>1;
for (int k=1;k<=ncfft2;++k)
m_realTwiddles[k-1] = exp( Complex(0,-3.14159265358979323846264338327 * ((double) (k) / ncfft + .5) ) );
}
}
void make_twiddles(int nfft,bool inverse)
{
if ( m_twiddles.size() == nfft) {
// reuse the twiddles, conjugate if necessary
if (inverse != m_inverse)
for (int i=0;i<nfft;++i)
m_twiddles[i] = conj( m_twiddles[i] );
}else{
m_twiddles.resize(nfft);
Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
for (int i=0;i<nfft;++i)
m_twiddles[i] = exp( Complex(0,i*phinc) );
}
m_inverse = inverse;
}
void factorize(int nfft)
{
if (m_stageRadix.size()==0 || m_stageRadix[0] * m_stageRemainder[0] != nfft)
{
m_stageRadix.resize(0);
m_stageRemainder.resize(0);
//factorize
//start factoring out 4's, then 2's, then 3,5,7,9,...
int n= nfft;
int p=4;
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p*p>n)
p=n;// no more factors
}
n /= p;
m_stageRadix.push_back(p);
m_stageRemainder.push_back(n);
}while(n>1);
}
m_nfft = nfft;
}
void scale(Complex *dst,Scalar s)
{ {
if (m_inverse) {
Scalar s = 1./m_nfft;
for (int k=0;k<m_nfft;++k) for (int k=0;k<m_nfft;++k)
dst[k] *= s; dst[k] *= s;
}
} }
private: private:
@ -349,6 +372,7 @@ namespace Eigen {
int m_nfft; int m_nfft;
bool m_inverse; bool m_inverse;
std::vector<Complex> m_twiddles; std::vector<Complex> m_twiddles;
std::vector<Complex> m_realTwiddles;
std::vector<int> m_stageRadix; std::vector<int> m_stageRadix;
std::vector<int> m_stageRemainder; std::vector<int> m_stageRemainder;
}; };

View File

@ -41,6 +41,7 @@ complex<long double> promote(long double x) { return complex<long double>( x);
{ {
long double totalpower=0; long double totalpower=0;
long double difpower=0; long double difpower=0;
cerr <<"idx\ttruth\t\tvalue\n";
for (size_t k0=0;k0<fftbuf.size();++k0) { for (size_t k0=0;k0<fftbuf.size();++k0) {
complex<long double> acc = 0; complex<long double> acc = 0;
long double phinc = -2.*k0* M_PIl / timebuf.size(); long double phinc = -2.*k0* M_PIl / timebuf.size();
@ -51,7 +52,7 @@ complex<long double> promote(long double x) { return complex<long double>( x);
complex<long double> x = promote(fftbuf[k0]); complex<long double> x = promote(fftbuf[k0]);
complex<long double> dif = acc - x; complex<long double> dif = acc - x;
difpower += norm(dif); difpower += norm(dif);
cerr << k0 << ":" << acc << " " << x << endl; cerr << k0 << "\t" << acc << "\t" << x << endl;
} }
cerr << "rmse:" << sqrt(difpower/totalpower) << endl; cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
return sqrt(difpower/totalpower); return sqrt(difpower/totalpower);
@ -108,6 +109,7 @@ void test_complex(int nfft)
void test_FFT() void test_FFT()
{ {
#if 0
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) ); CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
CALL_SUBTEST( test_complex<float>(1024) ); CALL_SUBTEST( test_complex<double>(1024) ); CALL_SUBTEST( test_complex<long double>(1024) ); CALL_SUBTEST( test_complex<float>(1024) ); CALL_SUBTEST( test_complex<double>(1024) ); CALL_SUBTEST( test_complex<long double>(1024) );
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) ); CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) );
@ -115,9 +117,11 @@ void test_FFT()
CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) ); CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) );
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) ); CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
/* #endif
#if 1
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) ); CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) );
CALL_SUBTEST( test_scalar<float>(1024) ); CALL_SUBTEST( test_scalar<double>(1024) ); CALL_SUBTEST( test_scalar<long double>(1024) ); CALL_SUBTEST( test_scalar<float>(1024) ); CALL_SUBTEST( test_scalar<double>(1024) ); CALL_SUBTEST( test_scalar<long double>(1024) );
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
*/ #endif
} }