mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 19:59:05 +08:00
refactor sparse solving unit tests
This commit is contained in:
parent
4f237f035c
commit
3172749f32
@ -22,7 +22,7 @@
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse_llt.h"
|
||||
#include "sparse_solver.h"
|
||||
#include <Eigen/IterativeSolvers>
|
||||
|
||||
template<typename T> void test_conjugate_gradient_T()
|
||||
@ -32,10 +32,10 @@ template<typename T> void test_conjugate_gradient_T()
|
||||
ConjugateGradient<SparseMatrix<T>, Lower, IdentityPreconditioner> cg_colmajor_lower_I;
|
||||
ConjugateGradient<SparseMatrix<T>, Upper, IdentityPreconditioner> cg_colmajor_upper_I;
|
||||
|
||||
sparse_llt(cg_colmajor_lower_diag);
|
||||
sparse_llt(cg_colmajor_upper_diag);
|
||||
sparse_llt(cg_colmajor_lower_I);
|
||||
sparse_llt(cg_colmajor_upper_I);
|
||||
CALL_SUBTEST( check_sparse_spd_solving(cg_colmajor_lower_diag) );
|
||||
CALL_SUBTEST( check_sparse_spd_solving(cg_colmajor_upper_diag) );
|
||||
CALL_SUBTEST( check_sparse_spd_solving(cg_colmajor_lower_I) );
|
||||
CALL_SUBTEST( check_sparse_spd_solving(cg_colmajor_upper_I) );
|
||||
}
|
||||
|
||||
void test_conjugate_gradient()
|
||||
|
@ -22,7 +22,7 @@
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse_llt.h"
|
||||
#include "sparse_solver.h"
|
||||
|
||||
template<typename T> void test_simplicial_cholesky_T()
|
||||
{
|
||||
@ -33,12 +33,19 @@ template<typename T> void test_simplicial_cholesky_T()
|
||||
SimplicialLDLt<SparseMatrix<T>, Lower> ldlt_colmajor_lower;
|
||||
SimplicialLDLt<SparseMatrix<T>, Upper> ldlt_colmajor_upper;
|
||||
|
||||
sparse_llt(chol_colmajor_lower);
|
||||
sparse_llt(chol_colmajor_upper);
|
||||
sparse_llt(llt_colmajor_lower);
|
||||
sparse_llt(llt_colmajor_upper);
|
||||
sparse_llt(ldlt_colmajor_lower);
|
||||
sparse_llt(ldlt_colmajor_upper);
|
||||
check_sparse_spd_solving(chol_colmajor_lower);
|
||||
check_sparse_spd_solving(chol_colmajor_upper);
|
||||
check_sparse_spd_solving(llt_colmajor_lower);
|
||||
check_sparse_spd_solving(llt_colmajor_upper);
|
||||
check_sparse_spd_solving(ldlt_colmajor_lower);
|
||||
check_sparse_spd_solving(ldlt_colmajor_upper);
|
||||
|
||||
check_sparse_spd_determinant(chol_colmajor_lower);
|
||||
check_sparse_spd_determinant(chol_colmajor_upper);
|
||||
check_sparse_spd_determinant(llt_colmajor_lower);
|
||||
check_sparse_spd_determinant(llt_colmajor_upper);
|
||||
check_sparse_spd_determinant(ldlt_colmajor_lower);
|
||||
check_sparse_spd_determinant(ldlt_colmajor_upper);
|
||||
}
|
||||
|
||||
void test_simplicial_cholesky()
|
||||
|
@ -132,17 +132,17 @@ template<typename Scalar,typename Index> void sparse_ldlt(int rows, int cols)
|
||||
|
||||
|
||||
// with a sparse rhs
|
||||
// SparseMatrixType spB(rows,cols), spX(rows,cols);
|
||||
// B.diagonal().array() += 1;
|
||||
// spB = B.sparseView(0.5,1);
|
||||
SparseMatrixType spB(rows,cols), spX(rows,cols);
|
||||
B.diagonal().array() += 1;
|
||||
spB = B.sparseView(0.5,1);
|
||||
|
||||
ref_X = refMat3.template selfadjointView<Lower>().llt().solve(DenseMatrix(spB));
|
||||
|
||||
spX = SimplicialCholesky<SparseMatrixType, Lower>(m3).solve(spB);
|
||||
VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: SimplicialCholesky solve, multiple sparse rhs");
|
||||
//
|
||||
// ref_X = refMat3.template selfadjointView<Lower>().llt().solve(DenseMatrix(spB));
|
||||
//
|
||||
// spX = SimplicialCholesky<SparseMatrixType, Lower>(m3).solve(spB);
|
||||
// VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs");
|
||||
//
|
||||
// spX = SimplicialCholesky<SparseMatrixType, Upper>(m3).solve(spB);
|
||||
// VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs");
|
||||
spX = SimplicialCholesky<SparseMatrixType, Upper>(m3).solve(spB);
|
||||
VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: SimplicialCholesky solve, multiple sparse rhs");
|
||||
}
|
||||
|
||||
|
||||
|
@ -1,92 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse.h"
|
||||
#include <Eigen/SparseExtra>
|
||||
|
||||
template<typename LLtSolver, typename Rhs, typename DenseMat, typename DenseRhs>
|
||||
void check_sllt(LLtSolver& llt, const typename LLtSolver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
|
||||
{
|
||||
typedef typename LLtSolver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
|
||||
DenseRhs refX = dA.ldlt().solve(db);
|
||||
//Scalar refDet = dA.determinant();
|
||||
|
||||
Rhs x(b.rows(), b.cols());
|
||||
Rhs oldb = b;
|
||||
|
||||
llt.compute(A);
|
||||
if (llt.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse LLt: factorization failed\n";
|
||||
return;
|
||||
}
|
||||
x = llt.solve(b);
|
||||
if (llt.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse LLt: solving failed\n";
|
||||
return;
|
||||
}
|
||||
VERIFY(oldb.isApprox(b) && "sparse LLt: the rhs should not be modified!");
|
||||
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()));
|
||||
|
||||
if(A.cols()<30)
|
||||
{
|
||||
//std::cout << refDet << " == " << lu.determinant() << "\n";
|
||||
//VERIFY_IS_APPROX(refDet,llt.determinant());
|
||||
}
|
||||
}
|
||||
|
||||
template<typename LLtSolver> void sparse_llt(LLtSolver& llt)
|
||||
{
|
||||
typedef typename LLtSolver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
|
||||
std::vector<Vector2i> zeroCoords;
|
||||
std::vector<Vector2i> nonzeroCoords;
|
||||
|
||||
int size = internal::random<int>(1,300);
|
||||
double density = (std::max)(8./(size*size), 0.01);
|
||||
//int rhsSize = internal::random<int>(1,10);
|
||||
|
||||
Mat m2(size, size);
|
||||
DenseMatrix refMat2(size, size);
|
||||
|
||||
DenseVector b = DenseVector::Random(size);
|
||||
DenseVector refX(size), x(size);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
|
||||
|
||||
Mat m3 = m2 * m2.adjoint(), m3_half(size,size);
|
||||
DenseMatrix refMat3 = refMat2 * refMat2.adjoint();
|
||||
|
||||
m3_half.template selfadjointView<LLtSolver::UpLo>().rankUpdate(m2,0);
|
||||
|
||||
check_sllt(llt, m3, b, refMat3, b);
|
||||
check_sllt(llt, m3_half, b, refMat3, b);
|
||||
}
|
@ -1,90 +0,0 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse.h"
|
||||
#include <Eigen/SparseExtra>
|
||||
|
||||
template<typename LUSolver, typename Rhs, typename DenseMat, typename DenseRhs>
|
||||
void check_slu(LUSolver& lu, const typename LUSolver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
|
||||
{
|
||||
typedef typename LUSolver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
|
||||
DenseRhs refX = dA.lu().solve(db);
|
||||
Scalar refDet = dA.determinant();
|
||||
|
||||
Rhs x(b.rows(), b.cols());
|
||||
Rhs oldb = b;
|
||||
|
||||
lu.compute(A);
|
||||
if (lu.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse LU: factorization failed\n";
|
||||
return;
|
||||
}
|
||||
x = lu.solve(b);
|
||||
if (lu.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse LU: solving failed\n";
|
||||
return;
|
||||
}
|
||||
VERIFY(oldb.isApprox(b) && "sparse LU: the rhs should not be modified!");
|
||||
|
||||
VERIFY(refX.isApprox(x,test_precision<Scalar>()));
|
||||
|
||||
if(A.cols()<30)
|
||||
{
|
||||
//std::cout << refDet << " == " << lu.determinant() << "\n";
|
||||
VERIFY_IS_APPROX(refDet,lu.determinant());
|
||||
}
|
||||
}
|
||||
|
||||
template<typename LUSolver> void sparse_lu(LUSolver& lu)
|
||||
{
|
||||
typedef typename LUSolver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
|
||||
std::vector<Vector2i> zeroCoords;
|
||||
std::vector<Vector2i> nonzeroCoords;
|
||||
|
||||
int size = internal::random<int>(1,300);
|
||||
double density = (std::max)(8./(size*size), 0.01);
|
||||
//int rhsSize = internal::random<int>(1,10);
|
||||
|
||||
Mat m2(size, size);
|
||||
DenseMatrix refMat2(size, size);
|
||||
|
||||
DenseVector b = DenseVector::Random(size);
|
||||
DenseVector refX(size), x(size);
|
||||
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
|
||||
check_slu(lu, m2, b, refMat2, b);
|
||||
|
||||
refMat2.setZero();
|
||||
m2.setZero();
|
||||
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
|
||||
check_slu(lu, m2, b, refMat2, b);
|
||||
}
|
193
unsupported/test/sparse_solver.h
Normal file
193
unsupported/test/sparse_solver.h
Normal file
@ -0,0 +1,193 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse.h"
|
||||
#include <Eigen/SparseExtra>
|
||||
|
||||
template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
|
||||
void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
|
||||
DenseRhs refX = dA.lu().solve(db);
|
||||
|
||||
Rhs x(b.rows(), b.cols());
|
||||
Rhs oldb = b;
|
||||
|
||||
solver.compute(A);
|
||||
if (solver.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse SPD: factorization failed (check_sparse_solving)\n";
|
||||
exit(0);
|
||||
return;
|
||||
}
|
||||
x = solver.solve(b);
|
||||
if (solver.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse SPD: solving failed\n";
|
||||
return;
|
||||
}
|
||||
VERIFY(oldb.isApprox(b) && "sparse SPD: the rhs should not be modified!");
|
||||
|
||||
VERIFY(x.isApprox(refX,test_precision<Scalar>()));
|
||||
}
|
||||
|
||||
template<typename Solver, typename DenseMat>
|
||||
void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef typename Mat::RealScalar RealScalar;
|
||||
|
||||
solver.compute(A);
|
||||
if (solver.info() != Success)
|
||||
{
|
||||
std::cerr << "sparse SPD: factorization failed (check_sparse_determinant)\n";
|
||||
return;
|
||||
}
|
||||
|
||||
Scalar refDet = dA.determinant();
|
||||
VERIFY_IS_APPROX(refDet,solver.determinant());
|
||||
}
|
||||
|
||||
|
||||
template<typename Solver, typename DenseMat>
|
||||
int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
|
||||
int size = internal::random<int>(1,maxSize);
|
||||
double density = (std::max)(8./(size*size), 0.01);
|
||||
|
||||
Mat M(size, size);
|
||||
DenseMatrix dM(size, size);
|
||||
|
||||
initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
|
||||
|
||||
A = M * M.adjoint();
|
||||
dA = dM * dM.adjoint();
|
||||
|
||||
halfA.resize(size,size);
|
||||
halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
template<typename Solver> void check_sparse_spd_solving(Solver& solver)
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
|
||||
// generate the problem
|
||||
Mat A, halfA;
|
||||
DenseMatrix dA;
|
||||
int size = generate_sparse_spd_problem(solver, A, halfA, dA);
|
||||
|
||||
// generate the right hand sides
|
||||
int rhsCols = internal::random<int>(1,16);
|
||||
double density = (std::max)(8./(size*rhsCols), 0.1);
|
||||
Mat B(size,rhsCols);
|
||||
DenseVector b = DenseVector::Random(size);
|
||||
DenseMatrix dB(size,rhsCols);
|
||||
initSparse<Scalar>(density, dB, B);
|
||||
|
||||
check_sparse_solving(solver, A, b, dA, b);
|
||||
check_sparse_solving(solver, halfA, b, dA, b);
|
||||
check_sparse_solving(solver, A, dB, dA, dB);
|
||||
check_sparse_solving(solver, halfA, dB, dA, dB);
|
||||
check_sparse_solving(solver, A, B, dA, dB);
|
||||
check_sparse_solving(solver, halfA, B, dA, dB);
|
||||
}
|
||||
|
||||
template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
|
||||
// generate the problem
|
||||
Mat A, halfA;
|
||||
DenseMatrix dA;
|
||||
generate_sparse_spd_problem(solver, A, halfA, dA, 30);
|
||||
|
||||
check_sparse_determinant(solver, A, dA);
|
||||
check_sparse_determinant(solver, halfA, dA );
|
||||
}
|
||||
|
||||
template<typename Solver, typename DenseMat>
|
||||
int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300)
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
|
||||
int size = internal::random<int>(1,maxSize);
|
||||
double density = (std::max)(8./(size*size), 0.01);
|
||||
|
||||
A.resize(size,size);
|
||||
dA.resize(size,size);
|
||||
|
||||
initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
template<typename Solver> void check_sparse_square_solving(Solver& solver)
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
||||
|
||||
int rhsCols = internal::random<int>(1,16);
|
||||
|
||||
Mat A;
|
||||
DenseMatrix dA;
|
||||
int size = generate_sparse_square_problem(solver, A, dA);
|
||||
|
||||
DenseVector b = DenseVector::Random(size);
|
||||
DenseMatrix dB = DenseMatrix::Random(size,rhsCols);
|
||||
|
||||
check_sparse_solving(solver, A, b, dA, b);
|
||||
check_sparse_solving(solver, A, dB, dA, dB);
|
||||
}
|
||||
|
||||
template<typename Solver> void check_sparse_square_determinant(Solver& solver)
|
||||
{
|
||||
typedef typename Solver::MatrixType Mat;
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
|
||||
// generate the problem
|
||||
Mat A;
|
||||
DenseMatrix dA;
|
||||
generate_sparse_square_problem(solver, A, dA, 30);
|
||||
|
||||
check_sparse_determinant(solver, A, dA);
|
||||
}
|
@ -22,7 +22,7 @@
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse_lu.h"
|
||||
#include "sparse_solver.h"
|
||||
|
||||
#ifdef EIGEN_SUPERLU_SUPPORT
|
||||
#include <Eigen/SuperLUSupport>
|
||||
@ -33,7 +33,9 @@ void test_superlu_support()
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
SuperLU<SparseMatrix<double> > superlu_double_colmajor;
|
||||
SuperLU<SparseMatrix<std::complex<double> > > superlu_cplxdouble_colmajor;
|
||||
CALL_SUBTEST_1(sparse_lu(superlu_double_colmajor));
|
||||
CALL_SUBTEST_1(sparse_lu(superlu_cplxdouble_colmajor));
|
||||
CALL_SUBTEST_1( check_sparse_square_solving(superlu_double_colmajor) );
|
||||
CALL_SUBTEST_2( check_sparse_square_solving(superlu_cplxdouble_colmajor) );
|
||||
CALL_SUBTEST_1( check_sparse_square_determinant(superlu_double_colmajor) );
|
||||
CALL_SUBTEST_2( check_sparse_square_determinant(superlu_cplxdouble_colmajor) );
|
||||
}
|
||||
}
|
||||
|
@ -22,7 +22,7 @@
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "sparse_lu.h"
|
||||
#include "sparse_solver.h"
|
||||
|
||||
#ifdef EIGEN_UMFPACK_SUPPORT
|
||||
#include <Eigen/UmfPackSupport>
|
||||
@ -33,7 +33,9 @@ void test_umfpack_support()
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
UmfPackLU<SparseMatrix<double> > umfpack_double_colmajor;
|
||||
UmfPackLU<SparseMatrix<std::complex<double> > > umfpack_cplxdouble_colmajor;
|
||||
CALL_SUBTEST_1(sparse_lu(umfpack_double_colmajor));
|
||||
CALL_SUBTEST_1(sparse_lu(umfpack_cplxdouble_colmajor));
|
||||
CALL_SUBTEST_1(check_sparse_square_solving(umfpack_double_colmajor));
|
||||
CALL_SUBTEST_2(check_sparse_square_solving(umfpack_cplxdouble_colmajor));
|
||||
CALL_SUBTEST_1(check_sparse_square_determinant(umfpack_double_colmajor));
|
||||
CALL_SUBTEST_2(check_sparse_square_determinant(umfpack_cplxdouble_colmajor));
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user