Implement complex MatrixPowerTriangular. There are still problems with real one.

This commit is contained in:
Chen-Pang He 2012-09-30 02:14:16 +08:00
parent 209199a13e
commit 332eb36436
4 changed files with 411 additions and 209 deletions

View File

@ -163,8 +163,8 @@ template<typename Derived> class MatrixBase
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other);
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& lazyAssign(const MatrixPowerProductBase<ProductDerived, Lhs,Rhs>& other);
template<typename MatrixPower, typename Lhs, typename Rhs>
Derived& lazyAssign(const MatrixPowerProduct<MatrixPower, Lhs,Rhs>& other);
#endif // not EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>

View File

@ -271,7 +271,7 @@ template<typename Derived> class MatrixFunctionReturnValue;
template<typename Derived> class MatrixSquareRootReturnValue;
template<typename Derived> class MatrixLogarithmReturnValue;
template<typename Derived> class MatrixPowerReturnValue;
template<typename Derived, typename Lhs, typename Rhs> class MatrixPowerProductBase;
template<typename Derived, typename Lhs, typename Rhs> class MatrixPowerProduct;
namespace internal {
template <typename Scalar>

View File

@ -12,7 +12,222 @@
namespace Eigen {
template<typename MatrixType> class MatrixPowerEvaluator;
/**
* \ingroup MatrixFunctions_Module
*
* \brief Class for computing matrix powers.
*
* \tparam MatrixType type of the base, expected to be an instantiation
* of the Matrix class template.
*
* This class is capable of computing complex upper triangular matrices raised
* to an arbitrary real power.
*/
template<typename MatrixType>
class MatrixPowerTriangular : public MatrixPowerBase<MatrixPowerTriangular<MatrixType>,MatrixType>
{
public:
EIGEN_MATRIX_POWER_PUBLIC_INTERFACE(MatrixPowerTriangular)
/**
* \brief Constructor.
*
* \param[in] A the base of the matrix power.
*
* The class stores a reference to A, so it should not be changed
* (or destroyed) before evaluation.
*/
explicit MatrixPowerTriangular(const MatrixType& A) : Base(A,0), m_T(Base::m_A)
{ }
#ifdef EIGEN_PARSED_BY_DOXYGEN
/**
* \brief Returns the matrix power.
*
* \param[in] p exponent, a real scalar.
* \return The expression \f$ A^p \f$, where A is specified in the
* constructor.
*/
const MatrixPowerBaseReturnValue<MatrixPowerTriangular<MatrixType>,MatrixType> operator()(RealScalar p);
#endif
/**
* \brief Compute the matrix power.
*
* \param[in] p exponent, a real scalar.
* \param[out] res \f$ A^p \f$ where A is specified in the
* constructor.
*/
void compute(MatrixType& res, RealScalar p);
/**
* \brief Compute the matrix power multiplied by another matrix.
*
* \param[in] b a matrix with the same rows as A.
* \param[in] p exponent, a real scalar.
* \param[out] res \f$ A^p b \f$, where A is specified in the
* constructor.
*/
template<typename Derived, typename ResultType>
void compute(const Derived& b, ResultType& res, RealScalar p);
private:
EIGEN_MATRIX_POWER_PROTECTED_MEMBERS(MatrixPowerTriangular)
const TriangularView<MatrixType,Upper> m_T;
RealScalar modfAndInit(RealScalar, RealScalar*);
template<typename Derived, typename ResultType>
void apply(const Derived&, ResultType&, bool&);
template<typename ResultType>
void computeIntPower(ResultType&, RealScalar);
template<typename Derived, typename ResultType>
void computeIntPower(const Derived&, ResultType&, RealScalar);
template<typename ResultType>
void computeFracPower(ResultType&, RealScalar);
};
template<typename MatrixType>
void MatrixPowerTriangular<MatrixType>::compute(MatrixType& res, RealScalar p)
{
switch (m_A.cols()) {
case 0:
break;
case 1:
res(0,0) = std::pow(m_T.coeff(0,0), p);
break;
default:
RealScalar intpart, x = modfAndInit(p, &intpart);
res = m_Id;
computeIntPower(res, intpart);
computeFracPower(res, x);
}
}
template<typename MatrixType>
template<typename Derived, typename ResultType>
void MatrixPowerTriangular<MatrixType>::compute(const Derived& b, ResultType& res, RealScalar p)
{
switch (m_A.cols()) {
case 0:
break;
case 1:
res = std::pow(m_T.coeff(0,0), p) * b;
break;
default:
RealScalar intpart, x = modfAndInit(p, &intpart);
computeIntPower(b, res, intpart);
computeFracPower(res, x);
}
}
template<typename MatrixType>
typename MatrixPowerTriangular<MatrixType>::Base::RealScalar
MatrixPowerTriangular<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
{
*intpart = std::floor(x);
RealScalar res = x - *intpart;
if (!m_conditionNumber && res) {
const RealArray absTdiag = m_A.diagonal().array().abs();
m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
}
if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber,res)) {
--res;
++*intpart;
}
return res;
}
template<typename MatrixType>
template<typename Derived, typename ResultType>
void MatrixPowerTriangular<MatrixType>::apply(const Derived& b, ResultType& res, bool& init)
{
if (init)
res = m_tmp1.template triangularView<Upper>() * res;
else {
init = true;
res.noalias() = m_tmp1.template triangularView<Upper>() * b;
}
}
template<typename MatrixType>
template<typename ResultType>
void MatrixPowerTriangular<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
{
RealScalar pp = std::abs(p);
if (p<0) m_tmp1 = m_T.solve(m_Id);
else m_tmp1 = m_T;
while (pp >= 1) {
if (std::fmod(pp, 2) >= 1)
res = m_tmp1.template triangularView<Upper>() * res;
m_tmp1 = m_tmp1.template triangularView<Upper>() * m_tmp1;
pp /= 2;
}
}
template<typename MatrixType>
template<typename Derived, typename ResultType>
void MatrixPowerTriangular<MatrixType>::computeIntPower(const Derived& b, ResultType& res, RealScalar p)
{
if (b.cols() >= m_A.cols()) {
m_tmp2 = m_Id;
computeIntPower(m_tmp2, p);
res.noalias() = m_tmp2.template triangularView<Upper>() * b;
}
else {
RealScalar pp = std::abs(p);
int squarings, applyings = internal::binary_powering_cost(pp, &squarings);
bool init = false;
if (p==0) {
res = b;
return;
}
else if (p>0) {
m_tmp1 = m_T;
}
else if (m_A.cols() > 2 && b.cols()*(pp-applyings) <= m_A.cols()*squarings) {
res = m_T.solve(b);
for (--pp; pp >= 1; --pp)
res = m_T.solve(res);
return;
}
else {
m_tmp1 = m_T.solve(m_Id);
}
while (b.cols()*(pp-applyings) > m_A.cols()*squarings) {
if (std::fmod(pp, 2) >= 1) {
apply(b, res, init);
--applyings;
}
m_tmp1 = m_tmp1.template triangularView<Upper>() * m_tmp1;
--squarings;
pp /= 2;
}
for (; pp >= 1; --pp)
apply(b, res, init);
}
}
template<typename MatrixType>
template<typename ResultType>
void MatrixPowerTriangular<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
{
if (p) {
eigen_assert(m_conditionNumber);
MatrixPowerTriangularAtomic<MatrixType>(m_A).compute(m_tmp1, p);
res = m_tmp1.template triangularView<Upper>() * res;
}
}
/**
* \ingroup MatrixFunctions_Module
@ -44,18 +259,22 @@ class MatrixPower : public MatrixPowerBase<MatrixPower<MatrixType>,MatrixType>
*
* \param[in] A the base of the matrix power.
*
* \warning Construct with a matrix, not a matrix expression!
* The class stores a reference to A, so it should not be changed
* (or destroyed) before evaluation.
*/
explicit MatrixPower(const MatrixType& A) : Base(A,0)
{ }
#ifdef EIGEN_PARSED_BY_DOXYGEN
/**
* \brief Return the expression \f$ A^p \f$.
* \brief Returns the matrix power.
*
* \param[in] p exponent, a real scalar.
* \return The expression \f$ A^p \f$, where A is specified in the
* constructor.
*/
const MatrixPowerEvaluator<MatrixType> operator()(RealScalar p)
{ return MatrixPowerEvaluator<MatrixType>(*this, p); }
const MatrixPowerBaseReturnValue<MatrixPower<MatrixType>,MatrixType> operator()(RealScalar p);
#endif
/**
* \brief Compute the matrix power.
@ -242,31 +461,13 @@ void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
}
}
template<typename Lhs, typename Rhs>
class MatrixPowerMatrixProduct : public MatrixPowerProductBase<MatrixPowerMatrixProduct<Lhs,Rhs>,Lhs,Rhs>
{
public:
EIGEN_MATRIX_POWER_PRODUCT_PUBLIC_INTERFACE(MatrixPowerMatrixProduct)
namespace internal {
MatrixPowerMatrixProduct(MatrixPower<Lhs>& pow, const Rhs& b, RealScalar p) :
m_pow(pow),
m_b(b),
m_p(p)
{ }
template<typename Derived>
struct traits<MatrixPowerReturnValue<Derived> >
{ typedef typename Derived::PlainObject ReturnType; };
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ m_pow.compute(m_b, res, m_p); }
Index rows() const { return m_pow.rows(); }
Index cols() const { return m_b.cols(); }
private:
MatrixPower<Lhs>& m_pow;
const Rhs& m_b;
const RealScalar m_p;
MatrixPowerMatrixProduct& operator=(const MatrixPowerMatrixProduct&);
};
} // namespace internal
/**
* \ingroup MatrixFunctions_Module
@ -316,10 +517,11 @@ class MatrixPowerReturnValue : public ReturnByValue<MatrixPowerReturnValue<Deriv
* \param[in] b the matrix (expression) to be applied.
*/
template<typename OtherDerived>
const MatrixPowerMatrixProduct<PlainObject,OtherDerived> operator*(const MatrixBase<OtherDerived>& b) const
const MatrixPowerProduct<MatrixPower<PlainObject>,PlainObject,OtherDerived>
operator*(const MatrixBase<OtherDerived>& b) const
{
MatrixPower<PlainObject> Apow(m_A.eval());
return MatrixPowerMatrixProduct<PlainObject,OtherDerived>(Apow, b.derived(), m_p);
return MatrixPowerProduct<MatrixPower<PlainObject>,PlainObject,OtherDerived>(Apow, b.derived(), m_p);
}
Index rows() const { return m_A.rows(); }
@ -331,52 +533,6 @@ class MatrixPowerReturnValue : public ReturnByValue<MatrixPowerReturnValue<Deriv
MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
};
template<typename MatrixType>
class MatrixPowerEvaluator : public ReturnByValue<MatrixPowerEvaluator<MatrixType> >
{
public:
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
MatrixPowerEvaluator(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
{ }
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ m_pow.compute(res, m_p); }
template<typename Derived>
const MatrixPowerMatrixProduct<MatrixType,Derived> operator*(const MatrixBase<Derived>& b) const
{ return MatrixPowerMatrixProduct<MatrixType,Derived>(m_pow, b.derived(), m_p); }
Index rows() const { return m_pow.rows(); }
Index cols() const { return m_pow.cols(); }
private:
MatrixPower<MatrixType>& m_pow;
const RealScalar m_p;
MatrixPowerEvaluator& operator=(const MatrixPowerEvaluator&);
};
namespace internal {
template<typename Lhs, typename Rhs>
struct nested<MatrixPowerMatrixProduct<Lhs,Rhs> >
{ typedef typename MatrixPowerMatrixProduct<Lhs,Rhs>::PlainObject const& type; };
template<typename Derived>
struct traits<MatrixPowerReturnValue<Derived> >
{ typedef typename Derived::PlainObject ReturnType; };
template<typename MatrixType>
struct traits<MatrixPowerEvaluator<MatrixType> >
{ typedef MatrixType ReturnType; };
template<typename Lhs, typename Rhs>
struct traits<MatrixPowerMatrixProduct<Lhs,Rhs> >
: traits<MatrixPowerProductBase<MatrixPowerMatrixProduct<Lhs,Rhs>,Lhs,Rhs> >
{ };
} // namespace internal
template<typename Derived>
const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) const
{ return MatrixPowerReturnValue<Derived>(derived(), p); }

View File

@ -12,9 +12,171 @@
namespace Eigen {
#define EIGEN_MATRIX_POWER_PUBLIC_INTERFACE(Derived) \
typedef MatrixPowerBase<Derived, MatrixType> Base; \
using Base::RowsAtCompileTime; \
using Base::ColsAtCompileTime; \
using Base::Options; \
using Base::MaxRowsAtCompileTime; \
using Base::MaxColsAtCompileTime; \
typedef typename Base::Scalar Scalar; \
typedef typename Base::RealScalar RealScalar; \
typedef typename Base::RealArray RealArray;
#define EIGEN_MATRIX_POWER_PROTECTED_MEMBERS(Derived) \
using Base::m_A; \
using Base::m_Id; \
using Base::m_tmp1; \
using Base::m_tmp2; \
using Base::m_conditionNumber;
template<typename Derived, typename MatrixType>
class MatrixPowerBaseReturnValue : public ReturnByValue<MatrixPowerBaseReturnValue<Derived,MatrixType> >
{
public:
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
MatrixPowerBaseReturnValue(Derived& pow, RealScalar p) : m_pow(pow), m_p(p)
{ }
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ m_pow.compute(res, m_p); }
template<typename OtherDerived>
const MatrixPowerProduct<Derived,MatrixType,OtherDerived> operator*(const MatrixBase<OtherDerived>& b) const
{ return MatrixPowerProduct<Derived,MatrixType,OtherDerived>(m_pow, b.derived(), m_p); }
Index rows() const { return m_pow.rows(); }
Index cols() const { return m_pow.cols(); }
private:
Derived& m_pow;
const RealScalar m_p;
MatrixPowerBaseReturnValue& operator=(const MatrixPowerBaseReturnValue&);
};
template<typename Derived, typename MatrixType>
class MatrixPowerBase
{
private:
Derived& derived() { return *static_cast<Derived*>(this); }
public:
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
explicit MatrixPowerBase(const MatrixType& A, RealScalar cond) :
m_A(A),
m_Id(MatrixType::Identity(A.rows(),A.cols())),
m_conditionNumber(cond)
{ eigen_assert(A.rows() == A.cols()); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
const MatrixPowerBaseReturnValue<Derived,MatrixType> operator()(RealScalar p)
{ return MatrixPowerBaseReturnValue<Derived,MatrixType>(derived(), p); }
#endif
void compute(MatrixType& res, RealScalar p)
{ derived().compute(res,p); }
template<typename OtherDerived, typename ResultType>
void compute(const OtherDerived& b, ResultType& res, RealScalar p)
{ derived().compute(b,res,p); }
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
protected:
typedef Array<RealScalar,RowsAtCompileTime,1,ColMajor,MaxRowsAtCompileTime> RealArray;
const MatrixType& m_A;
const MatrixType m_Id;
MatrixType m_tmp1, m_tmp2;
RealScalar m_conditionNumber;
};
template<typename Derived, typename Lhs, typename Rhs>
class MatrixPowerProduct : public MatrixBase<MatrixPowerProduct<Derived,Lhs,Rhs> >
{
public:
typedef MatrixBase<MatrixPowerProduct<Derived,Lhs,Rhs> > Base;
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixPowerProduct)
MatrixPowerProduct(Derived& pow, const Rhs& b, RealScalar p) :
m_pow(pow),
m_b(b),
m_p(p)
{ eigen_assert(pow.cols() == b.rows()); }
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ m_pow.compute(m_b, res, m_p); }
inline Index rows() const { return m_pow.rows(); }
inline Index cols() const { return m_b.cols(); }
private:
Derived& m_pow;
const Rhs& m_b;
const RealScalar m_p;
};
template<typename Derived>
template<typename MatrixPower, typename Lhs, typename Rhs>
Derived& MatrixBase<Derived>::lazyAssign(const MatrixPowerProduct<MatrixPower,Lhs,Rhs>& other)
{
other.evalTo(derived());
return derived();
}
namespace internal {
template<int IsComplex>
struct recompose_complex_schur
template<typename Derived, typename MatrixType>
struct traits<MatrixPowerBaseReturnValue<Derived, MatrixType> >
{ typedef MatrixType ReturnType; };
template<typename Derived, typename Lhs, typename Rhs>
struct nested<MatrixPowerProduct<Derived,Lhs,Rhs> >
{ typedef typename MatrixPowerProduct<Derived,Lhs,Rhs>::PlainObject const& type; };
template<typename Derived, typename _Lhs, typename _Rhs>
struct traits<MatrixPowerProduct<Derived,_Lhs,_Rhs> >
{
typedef MatrixXpr XprKind;
typedef typename remove_all<_Lhs>::type Lhs;
typedef typename remove_all<_Rhs>::type Rhs;
typedef typename remove_all<MatrixPowerProduct<Derived,_Lhs,_Rhs> >::type PlainObject;
typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
typename traits<Rhs>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
enum {
RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
| EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
CoeffReadCost = 0
};
};
template<bool IsComplex> struct recompose_complex_schur;
template<>
struct recompose_complex_schur<true>
{
template<typename ResultType, typename MatrixType>
static inline void run(ResultType& res, const MatrixType& T, const MatrixType& U)
@ -22,7 +184,7 @@ struct recompose_complex_schur
};
template<>
struct recompose_complex_schur<0>
struct recompose_complex_schur<false>
{
template<typename ResultType, typename MatrixType>
static inline void run(ResultType& res, const MatrixType& T, const MatrixType& U)
@ -109,10 +271,14 @@ inline int matrix_power_get_pade_degree(long double normIminusT)
break;
return degree;
}
} // namespace internal
template<typename MatrixType, bool IsComplex=NumTraits<typename MatrixType::RealScalar>::IsComplex>
class MatrixPowerTriangularAtomic;
template<typename MatrixType>
class MatrixPowerTriangularAtomic
class MatrixPowerTriangularAtomic<MatrixType,true>
{
private:
enum {
@ -136,13 +302,13 @@ class MatrixPowerTriangularAtomic
};
template<typename MatrixType>
MatrixPowerTriangularAtomic<MatrixType>::MatrixPowerTriangularAtomic(const MatrixType& T) :
MatrixPowerTriangularAtomic<MatrixType,true>::MatrixPowerTriangularAtomic(const MatrixType& T) :
m_T(T),
m_Id(MatrixType::Identity(T.rows(), T.cols()))
{ eigen_assert(T.rows() == T.cols()); }
template<typename MatrixType>
void MatrixPowerTriangularAtomic<MatrixType>::compute(MatrixType& res, RealScalar p) const
void MatrixPowerTriangularAtomic<MatrixType,true>::compute(MatrixType& res, RealScalar p) const
{
switch (m_T.rows()) {
case 0:
@ -159,7 +325,7 @@ void MatrixPowerTriangularAtomic<MatrixType>::compute(MatrixType& res, RealScala
}
template<typename MatrixType>
void MatrixPowerTriangularAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res,
void MatrixPowerTriangularAtomic<MatrixType,true>::computePade(int degree, const MatrixType& IminusT, MatrixType& res,
RealScalar p) const
{
int i = degree<<1;
@ -172,7 +338,7 @@ void MatrixPowerTriangularAtomic<MatrixType>::computePade(int degree, const Matr
}
template<typename MatrixType>
void MatrixPowerTriangularAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
void MatrixPowerTriangularAtomic<MatrixType,true>::compute2x2(MatrixType& res, RealScalar p) const
{
using std::abs;
using std::pow;
@ -198,7 +364,7 @@ void MatrixPowerTriangularAtomic<MatrixType>::compute2x2(MatrixType& res, RealSc
}
template<typename MatrixType>
void MatrixPowerTriangularAtomic<MatrixType>::computeBig(MatrixType& res, RealScalar p) const
void MatrixPowerTriangularAtomic<MatrixType,true>::computeBig(MatrixType& res, RealScalar p) const
{
const int digits = std::numeric_limits<RealScalar>::digits;
const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision
@ -212,7 +378,7 @@ void MatrixPowerTriangularAtomic<MatrixType>::computeBig(MatrixType& res, RealSc
bool hasExtraSquareRoot=false;
while (true) {
IminusT = MatrixType::Identity(m_T.rows(), m_T.cols()) - T;
IminusT = m_Id - T;
normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
if (normIminusT < maxNormForPade) {
degree = internal::matrix_power_get_pade_degree(normIminusT);
@ -234,126 +400,6 @@ void MatrixPowerTriangularAtomic<MatrixType>::computeBig(MatrixType& res, RealSc
compute2x2(res, p);
}
#define EIGEN_MATRIX_POWER_PUBLIC_INTERFACE(Derived) \
typedef MatrixPowerBase<Derived, MatrixType> Base; \
using Base::RowsAtCompileTime; \
using Base::ColsAtCompileTime; \
using Base::Options; \
using Base::MaxRowsAtCompileTime; \
using Base::MaxColsAtCompileTime; \
typedef typename Base::Scalar Scalar; \
typedef typename Base::RealScalar RealScalar; \
typedef typename Base::RealArray RealArray;
#define EIGEN_MATRIX_POWER_PROTECTED_MEMBERS(Derived) \
using Base::m_A; \
using Base::m_Id; \
using Base::m_tmp1; \
using Base::m_tmp2; \
using Base::m_conditionNumber;
#define EIGEN_MATRIX_POWER_PRODUCT_PUBLIC_INTERFACE(Derived) \
typedef MatrixPowerProductBase<Derived, Lhs, Rhs> Base; \
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
namespace internal {
template<typename Derived, typename _Lhs, typename _Rhs>
struct traits<MatrixPowerProductBase<Derived,_Lhs,_Rhs> >
{
typedef MatrixXpr XprKind;
typedef typename remove_all<_Lhs>::type Lhs;
typedef typename remove_all<_Rhs>::type Rhs;
typedef typename remove_all<Derived>::type PlainObject;
typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
typename traits<Rhs>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
enum {
RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
| EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
CoeffReadCost = 0
};
};
} // namespace internal
template<typename Derived, typename MatrixType>
class MatrixPowerBase
{
public:
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
explicit MatrixPowerBase(const MatrixType& A, RealScalar cond);
void compute(MatrixType& res, RealScalar p);
template<typename OtherDerived, typename ResultType>
void compute(const OtherDerived& b, ResultType& res, RealScalar p);
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
protected:
typedef Array<RealScalar,RowsAtCompileTime,1,ColMajor,MaxRowsAtCompileTime> RealArray;
const MatrixType& m_A;
const MatrixType m_Id;
MatrixType m_tmp1, m_tmp2;
RealScalar m_conditionNumber;
};
template<typename Derived, typename MatrixType>
MatrixPowerBase<Derived,MatrixType>::MatrixPowerBase(const MatrixType& A, RealScalar cond) :
m_A(A),
m_Id(MatrixType::Identity(A.rows(),A.cols())),
m_conditionNumber(cond)
{ eigen_assert(A.rows() == A.cols()); }
template<typename Derived, typename MatrixType>
void MatrixPowerBase<Derived,MatrixType>::compute(MatrixType& res, RealScalar p)
{ static_cast<Derived*>(this)->compute(res,p); }
template<typename Derived, typename MatrixType>
template<typename OtherDerived, typename ResultType>
void MatrixPowerBase<Derived,MatrixType>::compute(const OtherDerived& b, ResultType& res, RealScalar p)
{ static_cast<Derived*>(this)->compute(b,res,p); }
template<typename Derived, typename Lhs, typename Rhs>
class MatrixPowerProductBase : public MatrixBase<Derived>
{
public:
typedef MatrixBase<Derived> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixPowerProductBase)
inline Index rows() const { return derived().rows(); }
inline Index cols() const { return derived().cols(); }
template<typename ResultType>
inline void evalTo(ResultType& res) const { derived().evalTo(res); }
};
template<typename Derived>
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& MatrixBase<Derived>::lazyAssign(const MatrixPowerProductBase<ProductDerived,Lhs,Rhs>& other)
{
other.derived().evalTo(derived());
return derived();
}
} // namespace Eigen
#endif // EIGEN_MATRIX_POWER