Cleaning pass on rcond estimator.

This commit is contained in:
Gael Guennebaud 2016-04-14 16:45:41 +02:00
parent d8a3bdaa24
commit 3551dea887
5 changed files with 99 additions and 150 deletions

View File

@ -193,12 +193,12 @@ template<typename _MatrixType, int _UpLo> class LDLT
LDLT& compute(const EigenBase<InputType>& matrix);
/** \returns an estimate of the reciprocal condition number of the matrix of
* which *this is the LDLT decomposition.
* which \c *this is the LDLT decomposition.
*/
RealScalar rcond() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return ReciprocalConditionNumberEstimate(m_l1_norm, *this);
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
template <typename Derived>
@ -216,10 +216,12 @@ template<typename _MatrixType, int _UpLo> class LDLT
MatrixType reconstructedMatrix() const;
/** \returns the decomposition itself to allow generic code to do
* ldlt.adjoint().solve(rhs).
*/
const LDLT<MatrixType, UpLo>& adjoint() const { return *this; };
/** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
*
* This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
* \code x = decomposition.adjoint().solve(b) \endcode
*/
const LDLT& adjoint() const { return *this; };
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
@ -456,22 +458,15 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputTyp
// Compute matrix L1 norm = max abs column sum.
m_l1_norm = RealScalar(0);
if (_UpLo == Lower) {
for (int col = 0; col < size; ++col) {
const RealScalar abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() +
m_matrix.row(col).head(col).template lpNorm<1>();
if (abs_col_sum > m_l1_norm) {
m_l1_norm = abs_col_sum;
}
}
} else {
for (int col = 0; col < a.cols(); ++col) {
const RealScalar abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() +
m_matrix.row(col).tail(size - col).template lpNorm<1>();
if (abs_col_sum > m_l1_norm) {
m_l1_norm = abs_col_sum;
}
}
// TODO move this code to SelfAdjointView
for (Index col = 0; col < size; ++col) {
RealScalar abs_col_sum;
if (_UpLo == Lower)
abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
else
abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
if (abs_col_sum > m_l1_norm)
m_l1_norm = abs_col_sum;
}
m_transpositions.resize(size);

View File

@ -136,13 +136,13 @@ template<typename _MatrixType, int _UpLo> class LLT
LLT& compute(const EigenBase<InputType>& matrix);
/** \returns an estimate of the reciprocal condition number of the matrix of
* which *this is the Cholesky decomposition.
*/
* which \c *this is the Cholesky decomposition.
*/
RealScalar rcond() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative");
return ReciprocalConditionNumberEstimate(m_l1_norm, *this);
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
/** \returns the LLT decomposition matrix
@ -169,10 +169,12 @@ template<typename _MatrixType, int _UpLo> class LLT
return m_info;
}
/** \returns the decomposition itself to allow generic code to do
* llt.adjoint().solve(rhs).
*/
const LLT<MatrixType, UpLo>& adjoint() const { return *this; };
/** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
*
* This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
* \code x = decomposition.adjoint().solve(b) \endcode
*/
const LLT& adjoint() const { return *this; };
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
@ -411,22 +413,15 @@ LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>
// Compute matrix L1 norm = max abs column sum.
m_l1_norm = RealScalar(0);
if (_UpLo == Lower) {
for (int col = 0; col < size; ++col) {
const RealScalar abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() +
m_matrix.row(col).head(col).template lpNorm<1>();
if (abs_col_sum > m_l1_norm) {
m_l1_norm = abs_col_sum;
}
}
} else {
for (int col = 0; col < a.cols(); ++col) {
const RealScalar abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() +
m_matrix.row(col).tail(size - col).template lpNorm<1>();
if (abs_col_sum > m_l1_norm) {
m_l1_norm = abs_col_sum;
}
}
// TODO move this code to SelfAdjointView
for (Index col = 0; col < size; ++col) {
RealScalar abs_col_sum;
if (_UpLo == Lower)
abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
else
abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
if (abs_col_sum > m_l1_norm)
m_l1_norm = abs_col_sum;
}
m_isInitialized = true;

View File

@ -13,139 +13,97 @@
namespace Eigen {
namespace internal {
template <typename MatrixType>
inline typename MatrixType::RealScalar MatrixL1Norm(const MatrixType& matrix) {
return matrix.cwiseAbs().colwise().sum().maxCoeff();
}
template <typename Vector>
inline typename Vector::RealScalar VectorL1Norm(const Vector& v) {
return v.template lpNorm<1>();
}
template <typename Vector, typename RealVector, bool IsComplex>
struct SignOrUnity {
struct rcond_compute_sign {
static inline Vector run(const Vector& v) {
const RealVector v_abs = v.cwiseAbs();
return (v_abs.array() == static_cast<typename Vector::RealScalar>(0))
.select(Vector::Ones(v.size()), v.cwiseQuotient(v_abs));
.select(Vector::Ones(v.size()), v.cwiseQuotient(v_abs));
}
};
// Partial specialization to avoid elementwise division for real vectors.
template <typename Vector>
struct SignOrUnity<Vector, Vector, false> {
struct rcond_compute_sign<Vector, Vector, false> {
static inline Vector run(const Vector& v) {
return (v.array() < static_cast<typename Vector::RealScalar>(0))
.select(-Vector::Ones(v.size()), Vector::Ones(v.size()));
.select(-Vector::Ones(v.size()), Vector::Ones(v.size()));
}
};
} // namespace internal
/** \class ConditionEstimator
* \ingroup Core_Module
*
* \brief Condition number estimator.
*
* Computing a decomposition of a dense matrix takes O(n^3) operations, while
* this method estimates the condition number quickly and reliably in O(n^2)
* operations.
*
* \returns an estimate of the reciprocal condition number
* (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given the matrix and
* its decomposition. Supports the following decompositions: FullPivLU,
* PartialPivLU, LDLT, and LLT.
*
* \sa FullPivLU, PartialPivLU, LDLT, LLT.
*/
/** \brief Reciprocal condition number estimator.
*
* Computing a decomposition of a dense matrix takes O(n^3) operations, while
* this method estimates the condition number quickly and reliably in O(n^2)
* operations.
*
* \returns an estimate of the reciprocal condition number
* (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and
* its decomposition. Supports the following decompositions: FullPivLU,
* PartialPivLU, LDLT, and LLT.
*
* \sa FullPivLU, PartialPivLU, LDLT, LLT.
*/
template <typename Decomposition>
typename Decomposition::RealScalar ReciprocalConditionNumberEstimate(
const typename Decomposition::MatrixType& matrix,
const Decomposition& dec) {
eigen_assert(matrix.rows() == dec.rows());
eigen_assert(matrix.cols() == dec.cols());
if (dec.rows() == 0) return typename Decomposition::RealScalar(1);
return ReciprocalConditionNumberEstimate(MatrixL1Norm(matrix), dec);
}
/** \class ConditionEstimator
* \ingroup Core_Module
*
* \brief Condition number estimator.
*
* Computing a decomposition of a dense matrix takes O(n^3) operations, while
* this method estimates the condition number quickly and reliably in O(n^2)
* operations.
*
* \returns an estimate of the reciprocal condition number
* (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and
* its decomposition. Supports the following decompositions: FullPivLU,
* PartialPivLU, LDLT, and LLT.
*
* \sa FullPivLU, PartialPivLU, LDLT, LLT.
*/
template <typename Decomposition>
typename Decomposition::RealScalar ReciprocalConditionNumberEstimate(
typename Decomposition::RealScalar matrix_norm, const Decomposition& dec) {
typename Decomposition::RealScalar
rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Decomposition& dec)
{
typedef typename Decomposition::RealScalar RealScalar;
eigen_assert(dec.rows() == dec.cols());
if (dec.rows() == 0) return RealScalar(1);
if (dec.rows() == 0) return RealScalar(1);
if (matrix_norm == RealScalar(0)) return RealScalar(0);
if (dec.rows() == 1) return RealScalar(1);
const typename Decomposition::RealScalar inverse_matrix_norm =
InverseMatrixL1NormEstimate(dec);
return (inverse_matrix_norm == RealScalar(0)
? RealScalar(0)
: (RealScalar(1) / inverse_matrix_norm) / matrix_norm);
if (dec.rows() == 1) return RealScalar(1);
const RealScalar inverse_matrix_norm = rcond_invmatrix_L1_norm_estimate(dec);
return (inverse_matrix_norm == RealScalar(0) ? RealScalar(0)
: (RealScalar(1) / inverse_matrix_norm) / matrix_norm);
}
/**
* \returns an estimate of ||inv(matrix)||_1 given a decomposition of
* matrix that implements .solve() and .adjoint().solve() methods.
*
* The method implements Algorithms 4.1 and 5.1 from
* http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf
* which also forms the basis for the condition number estimators in
* LAPACK. Since at most 10 calls to the solve method of dec are
* performed, the total cost is O(dims^2), as opposed to O(dims^3)
* needed to compute the inverse matrix explicitly.
*
* The most common usage is in estimating the condition number
* ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be
* computed directly in O(n^2) operations.
*
* Supports the following decompositions: FullPivLU, PartialPivLU, LDLT, and
* LLT.
*
* \sa FullPivLU, PartialPivLU, LDLT, LLT.
*/
* \returns an estimate of ||inv(matrix)||_1 given a decomposition of
* \a matrix that implements .solve() and .adjoint().solve() methods.
*
* This function implements Algorithms 4.1 and 5.1 from
* http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf
* which also forms the basis for the condition number estimators in
* LAPACK. Since at most 10 calls to the solve method of dec are
* performed, the total cost is O(dims^2), as opposed to O(dims^3)
* needed to compute the inverse matrix explicitly.
*
* The most common usage is in estimating the condition number
* ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be
* computed directly in O(n^2) operations.
*
* Supports the following decompositions: FullPivLU, PartialPivLU, LDLT, and
* LLT.
*
* \sa FullPivLU, PartialPivLU, LDLT, LLT.
*/
template <typename Decomposition>
typename Decomposition::RealScalar InverseMatrixL1NormEstimate(
const Decomposition& dec) {
typename Decomposition::RealScalar rcond_invmatrix_L1_norm_estimate(const Decomposition& dec)
{
typedef typename Decomposition::MatrixType MatrixType;
typedef typename Decomposition::Scalar Scalar;
typedef typename Decomposition::RealScalar RealScalar;
typedef typename internal::plain_col_type<MatrixType>::type Vector;
typedef typename internal::plain_col_type<MatrixType, RealScalar>::type
RealVector;
typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVector;
const bool is_complex = (NumTraits<Scalar>::IsComplex != 0);
eigen_assert(dec.rows() == dec.cols());
const Index n = dec.rows();
if (n == 0) {
if (n == 0)
return 0;
}
Vector v = dec.solve(Vector::Ones(n) / Scalar(n));
// lower_bound is a lower bound on
// ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1
// and is the objective maximized by the ("super-") gradient ascent
// algorithm below.
RealScalar lower_bound = internal::VectorL1Norm(v);
if (n == 1) {
RealScalar lower_bound = v.template lpNorm<1>();
if (n == 1)
return lower_bound;
}
// Gradient ascent algorithm follows: We know that the optimum is achieved at
// one of the simplices v = e_i, so in each iteration we follow a
// super-gradient to move towards the optimal one.
@ -154,8 +112,9 @@ typename Decomposition::RealScalar InverseMatrixL1NormEstimate(
Vector old_sign_vector;
Index v_max_abs_index = -1;
Index old_v_max_abs_index = v_max_abs_index;
for (int k = 0; k < 4; ++k) {
sign_vector = internal::SignOrUnity<Vector, RealVector, is_complex>::run(v);
for (int k = 0; k < 4; ++k)
{
sign_vector = internal::rcond_compute_sign<Vector, RealVector, is_complex>::run(v);
if (k > 0 && !is_complex && sign_vector == old_sign_vector) {
// Break if the solution stagnated.
break;
@ -169,7 +128,7 @@ typename Decomposition::RealScalar InverseMatrixL1NormEstimate(
}
// Move to the new simplex e_j, where j = v_max_abs_index.
v = dec.solve(Vector::Unit(n, v_max_abs_index)); // v = inv(matrix) * e_j.
lower_bound = internal::VectorL1Norm(v);
lower_bound = v.template lpNorm<1>();
if (lower_bound <= old_lower_bound) {
// Break if the gradient step did not increase the lower_bound.
break;
@ -192,16 +151,16 @@ typename Decomposition::RealScalar InverseMatrixL1NormEstimate(
// Hager's algorithm to vastly underestimate ||matrix||_1.
Scalar alternating_sign(RealScalar(1));
for (Index i = 0; i < n; ++i) {
v[i] = alternating_sign *
(RealScalar(1) + (RealScalar(i) / (RealScalar(n - 1))));
v[i] = alternating_sign * (RealScalar(1) + (RealScalar(i) / (RealScalar(n - 1))));
alternating_sign = -alternating_sign;
}
v = dec.solve(v);
const RealScalar alternate_lower_bound =
(2 * internal::VectorL1Norm(v)) / (3 * RealScalar(n));
const RealScalar alternate_lower_bound = (2 * v.template lpNorm<1>()) / (3 * RealScalar(n));
return numext::maxi(lower_bound, alternate_lower_bound);
}
} // namespace internal
} // namespace Eigen
#endif

View File

@ -231,13 +231,13 @@ template<typename _MatrixType> class FullPivLU
return Solve<FullPivLU, Rhs>(*this, b.derived());
}
/** \returns an estimate of the reciprocal condition number of the matrix of which *this is
/** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
the LU decomposition.
*/
inline RealScalar rcond() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return ReciprocalConditionNumberEstimate(m_l1_norm, *this);
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
/** \returns the determinant of the matrix of which

View File

@ -151,13 +151,13 @@ template<typename _MatrixType> class PartialPivLU
return Solve<PartialPivLU, Rhs>(*this, b.derived());
}
/** \returns an estimate of the reciprocal condition number of the matrix of which *this is
/** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
the LU decomposition.
*/
inline RealScalar rcond() const
{
eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
return ReciprocalConditionNumberEstimate(m_l1_norm, *this);
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
/** \returns the inverse of the matrix of which *this is the LU decomposition.