mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-23 10:09:36 +08:00
Pulled latest updates from trunk
This commit is contained in:
commit
36c9d08274
@ -18,12 +18,12 @@ namespace Eigen {
|
||||
* Row (column) i of A is the matperm(i) row (column) of Ap.
|
||||
* WARNING: As computed by METIS, this corresponds to the vector iperm (instead of perm)
|
||||
*/
|
||||
template <typename Index>
|
||||
template <typename StorageIndex>
|
||||
class MetisOrdering
|
||||
{
|
||||
public:
|
||||
typedef PermutationMatrix<Dynamic,Dynamic,Index> PermutationType;
|
||||
typedef Matrix<Index,Dynamic,1> IndexVector;
|
||||
typedef PermutationMatrix<Dynamic,Dynamic,StorageIndex> PermutationType;
|
||||
typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
|
||||
|
||||
template <typename MatrixType>
|
||||
void get_symmetrized_graph(const MatrixType& A)
|
||||
@ -36,7 +36,7 @@ public:
|
||||
Index TotNz = 0;
|
||||
IndexVector visited(m);
|
||||
visited.setConstant(-1);
|
||||
for (int j = 0; j < m; j++)
|
||||
for (StorageIndex j = 0; j < m; j++)
|
||||
{
|
||||
// Compute the union structure of of A(j,:) and At(j,:)
|
||||
visited(j) = j; // Do not include the diagonal element
|
||||
@ -67,8 +67,8 @@ public:
|
||||
|
||||
// Now compute the real adjacency list of each column/row
|
||||
visited.setConstant(-1);
|
||||
Index CurNz = 0;
|
||||
for (int j = 0; j < m; j++)
|
||||
StorageIndex CurNz = 0;
|
||||
for (StorageIndex j = 0; j < m; j++)
|
||||
{
|
||||
m_indexPtr(j) = CurNz;
|
||||
|
||||
@ -76,7 +76,7 @@ public:
|
||||
// Add the pattern of row/column j of A to A+At
|
||||
for (typename MatrixType::InnerIterator it(A,j); it; ++it)
|
||||
{
|
||||
Index idx = it.index(); // Get the row index (for column major) or column index (for row major)
|
||||
StorageIndex idx = it.index(); // Get the row index (for column major) or column index (for row major)
|
||||
if (visited(idx) != j )
|
||||
{
|
||||
visited(idx) = j;
|
||||
@ -87,7 +87,7 @@ public:
|
||||
//Add the pattern of row/column j of At to A+At
|
||||
for (typename MatrixType::InnerIterator it(At, j); it; ++it)
|
||||
{
|
||||
Index idx = it.index();
|
||||
StorageIndex idx = it.index();
|
||||
if(visited(idx) != j)
|
||||
{
|
||||
visited(idx) = j;
|
||||
@ -102,7 +102,7 @@ public:
|
||||
template <typename MatrixType>
|
||||
void operator() (const MatrixType& A, PermutationType& matperm)
|
||||
{
|
||||
Index m = A.cols();
|
||||
StorageIndex m = internal::convert_index<StorageIndex>(A.cols()); // must be StorageIndex, because it is passed by address to METIS
|
||||
IndexVector perm(m),iperm(m);
|
||||
// First, symmetrize the matrix graph.
|
||||
get_symmetrized_graph(A);
|
||||
|
@ -90,7 +90,6 @@ class CompressedStorage
|
||||
m_size = size;
|
||||
}
|
||||
|
||||
// FIXME i should be a StorageIndex
|
||||
void append(const Scalar& v, Index i)
|
||||
{
|
||||
Index id = m_size;
|
||||
@ -110,13 +109,13 @@ class CompressedStorage
|
||||
inline const StorageIndex& index(Index i) const { return m_indices[i]; }
|
||||
|
||||
/** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */
|
||||
inline StorageIndex searchLowerIndex(StorageIndex key) const
|
||||
inline Index searchLowerIndex(Index key) const
|
||||
{
|
||||
return searchLowerIndex(0, m_size, key);
|
||||
}
|
||||
|
||||
/** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */
|
||||
inline Index searchLowerIndex(Index start, Index end, StorageIndex key) const
|
||||
inline Index searchLowerIndex(Index start, Index end, Index key) const
|
||||
{
|
||||
while(end>start)
|
||||
{
|
||||
@ -131,7 +130,7 @@ class CompressedStorage
|
||||
|
||||
/** \returns the stored value at index \a key
|
||||
* If the value does not exist, then the value \a defaultValue is returned without any insertion. */
|
||||
inline Scalar at(StorageIndex key, const Scalar& defaultValue = Scalar(0)) const
|
||||
inline Scalar at(Index key, const Scalar& defaultValue = Scalar(0)) const
|
||||
{
|
||||
if (m_size==0)
|
||||
return defaultValue;
|
||||
@ -144,7 +143,7 @@ class CompressedStorage
|
||||
}
|
||||
|
||||
/** Like at(), but the search is performed in the range [start,end) */
|
||||
inline Scalar atInRange(Index start, Index end, StorageIndex key, const Scalar &defaultValue = Scalar(0)) const
|
||||
inline Scalar atInRange(Index start, Index end, Index key, const Scalar &defaultValue = Scalar(0)) const
|
||||
{
|
||||
if (start>=end)
|
||||
return defaultValue;
|
||||
@ -159,7 +158,7 @@ class CompressedStorage
|
||||
/** \returns a reference to the value at index \a key
|
||||
* If the value does not exist, then the value \a defaultValue is inserted
|
||||
* such that the keys are sorted. */
|
||||
inline Scalar& atWithInsertion(StorageIndex key, const Scalar& defaultValue = Scalar(0))
|
||||
inline Scalar& atWithInsertion(Index key, const Scalar& defaultValue = Scalar(0))
|
||||
{
|
||||
Index id = searchLowerIndex(0,m_size,key);
|
||||
if (id>=m_size || m_indices[id]!=key)
|
||||
@ -189,7 +188,7 @@ class CompressedStorage
|
||||
internal::smart_memmove(m_indices+id, m_indices+m_size, m_indices+id+1);
|
||||
}
|
||||
m_size++;
|
||||
m_indices[id] = key;
|
||||
m_indices[id] = internal::convert_index<StorageIndex>(key);
|
||||
m_values[id] = defaultValue;
|
||||
}
|
||||
return m_values[id];
|
||||
|
@ -171,19 +171,19 @@ struct SluMatrix : SuperMatrix
|
||||
if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
|
||||
{
|
||||
res.setStorageType(SLU_NR);
|
||||
res.nrow = mat.cols();
|
||||
res.ncol = mat.rows();
|
||||
res.nrow = internal::convert_index<int>(mat.cols());
|
||||
res.ncol = internal::convert_index<int>(mat.rows());
|
||||
}
|
||||
else
|
||||
{
|
||||
res.setStorageType(SLU_NC);
|
||||
res.nrow = mat.rows();
|
||||
res.ncol = mat.cols();
|
||||
res.nrow = internal::convert_index<int>(mat.rows());
|
||||
res.ncol = internal::convert_index<int>(mat.cols());
|
||||
}
|
||||
|
||||
res.Mtype = SLU_GE;
|
||||
|
||||
res.storage.nnz = mat.nonZeros();
|
||||
res.storage.nnz = internal::convert_index<int>(mat.nonZeros());
|
||||
res.storage.values = mat.derived().valuePtr();
|
||||
res.storage.innerInd = mat.derived().innerIndexPtr();
|
||||
res.storage.outerInd = mat.derived().outerIndexPtr();
|
||||
@ -361,7 +361,7 @@ class SuperLUBase : public SparseSolverBase<Derived>
|
||||
{
|
||||
set_default_options(&this->m_sluOptions);
|
||||
|
||||
const int size = a.rows();
|
||||
const Index size = a.rows();
|
||||
m_matrix = a;
|
||||
|
||||
m_sluA = internal::asSluMatrix(m_matrix);
|
||||
@ -380,7 +380,7 @@ class SuperLUBase : public SparseSolverBase<Derived>
|
||||
m_sluB.storage.values = 0;
|
||||
m_sluB.nrow = 0;
|
||||
m_sluB.ncol = 0;
|
||||
m_sluB.storage.lda = size;
|
||||
m_sluB.storage.lda = internal::convert_index<int>(size);
|
||||
m_sluX = m_sluB;
|
||||
|
||||
m_extractedDataAreDirty = true;
|
||||
@ -682,7 +682,7 @@ void SuperLUBase<MatrixType,Derived>::extractData() const
|
||||
NCformat *Ustore = static_cast<NCformat*>(m_sluU.Store);
|
||||
Scalar *SNptr;
|
||||
|
||||
const int size = m_matrix.rows();
|
||||
const Index size = m_matrix.rows();
|
||||
m_l.resize(size,size);
|
||||
m_l.resizeNonZeros(Lstore->nnz);
|
||||
m_u.resize(size,size);
|
||||
|
@ -296,7 +296,7 @@ class RandomSetter
|
||||
const Index inner = SetterRowMajor ? col : row;
|
||||
const Index outerMajor = outer >> OuterPacketBits; // index of the packet/map
|
||||
const Index outerMinor = outer & OuterPacketMask; // index of the inner vector in the packet
|
||||
const KeyType key = (KeyType(outerMinor)<<m_keyBitsOffset) | inner;
|
||||
const KeyType key = internal::convert_index<KeyType>((outerMinor<<m_keyBitsOffset) | inner);
|
||||
return m_hashmaps[outerMajor][key].value;
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user