Extend unit test to recursively check half-packet types and non packet types

This commit is contained in:
Gael Guennebaud 2018-11-26 14:10:07 +01:00
parent 0836a715d6
commit 382279eb7f

View File

@ -10,6 +10,7 @@
#include "main.h" #include "main.h"
#include "unsupported/Eigen/SpecialFunctions" #include "unsupported/Eigen/SpecialFunctions"
#include <typeinfo>
#if defined __GNUC__ && __GNUC__>=6 #if defined __GNUC__ && __GNUC__>=6
#pragma GCC diagnostic ignored "-Wignored-attributes" #pragma GCC diagnostic ignored "-Wignored-attributes"
@ -22,6 +23,8 @@ const bool g_vectorize_sse = true;
const bool g_vectorize_sse = false; const bool g_vectorize_sse = false;
#endif #endif
bool g_first_pass = true;
namespace Eigen { namespace Eigen {
namespace internal { namespace internal {
template<typename T> T negate(const T& x) { return -x; } template<typename T> T negate(const T& x) { return -x; }
@ -109,14 +112,18 @@ struct packet_helper<false,Packet>
#define REF_MUL(a,b) ((a)*(b)) #define REF_MUL(a,b) ((a)*(b))
#define REF_DIV(a,b) ((a)/(b)) #define REF_DIV(a,b) ((a)/(b))
template<typename Scalar> void packetmath() template<typename Scalar,typename Packet> void packetmath()
{ {
using std::abs; using std::abs;
typedef internal::packet_traits<Scalar> PacketTraits; typedef internal::packet_traits<Scalar> PacketTraits;
typedef typename PacketTraits::type Packet; const int PacketSize = internal::unpacket_traits<Packet>::size;
const int PacketSize = PacketTraits::size;
typedef typename NumTraits<Scalar>::Real RealScalar; typedef typename NumTraits<Scalar>::Real RealScalar;
if (g_first_pass)
std::cerr << "=== Testing packet of type '" << typeid(Packet).name()
<< "' and scalar type '" << typeid(Scalar).name()
<< "' and size '" << PacketSize << "' ===\n" ;
const int max_size = PacketSize > 4 ? PacketSize : 4; const int max_size = PacketSize > 4 ? PacketSize : 4;
const int size = PacketSize*max_size; const int size = PacketSize*max_size;
EIGEN_ALIGN_MAX Scalar data1[size]; EIGEN_ALIGN_MAX Scalar data1[size];
@ -254,7 +261,7 @@ template<typename Scalar> void packetmath()
ref[0] += data1[i]; ref[0] += data1[i];
VERIFY(isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux"); VERIFY(isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux");
if(PacketSize==8 && internal::unpacket_traits<typename internal::unpacket_traits<Packet>::half>::size ==4) // so far, predux_half_dowto4 is only required in such a case if(PacketSize==8 && internal::unpacket_traits<typename internal::unpacket_traits<Packet>::half>::size ==4) // so far, predux_half_downto4 is only required in such a case
{ {
int HalfPacketSize = PacketSize>4 ? PacketSize/2 : PacketSize; int HalfPacketSize = PacketSize>4 ? PacketSize/2 : PacketSize;
for (int i=0; i<HalfPacketSize; ++i) for (int i=0; i<HalfPacketSize; ++i)
@ -334,17 +341,16 @@ template<typename Scalar> void packetmath()
} }
} }
template<typename Scalar> void packetmath_real() template<typename Scalar,typename Packet> void packetmath_real()
{ {
using std::abs; using std::abs;
typedef internal::packet_traits<Scalar> PacketTraits; typedef internal::packet_traits<Scalar> PacketTraits;
typedef typename PacketTraits::type Packet; const int PacketSize = internal::unpacket_traits<Packet>::size;
const int PacketSize = PacketTraits::size;
const int size = PacketSize*4; const int size = PacketSize*4;
EIGEN_ALIGN_MAX Scalar data1[PacketTraits::size*4]; EIGEN_ALIGN_MAX Scalar data1[PacketSize*4];
EIGEN_ALIGN_MAX Scalar data2[PacketTraits::size*4]; EIGEN_ALIGN_MAX Scalar data2[PacketSize*4];
EIGEN_ALIGN_MAX Scalar ref[PacketTraits::size*4]; EIGEN_ALIGN_MAX Scalar ref[PacketSize*4];
for (int i=0; i<size; ++i) for (int i=0; i<size; ++i)
{ {
@ -379,7 +385,7 @@ template<typename Scalar> void packetmath_real()
data2[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6)); data2[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6));
} }
CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh); CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh);
if(PacketTraits::HasExp && PacketTraits::size>=2) if(PacketTraits::HasExp && PacketSize>=2)
{ {
data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
data1[1] = std::numeric_limits<Scalar>::epsilon(); data1[1] = std::numeric_limits<Scalar>::epsilon();
@ -455,7 +461,7 @@ template<typename Scalar> void packetmath_real()
CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErfc, std::erfc, internal::perfc); CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErfc, std::erfc, internal::perfc);
#endif #endif
if(PacketTraits::HasLog && PacketTraits::size>=2) if(PacketTraits::HasLog && PacketSize>=2)
{ {
data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); data1[0] = std::numeric_limits<Scalar>::quiet_NaN();
data1[1] = std::numeric_limits<Scalar>::epsilon(); data1[1] = std::numeric_limits<Scalar>::epsilon();
@ -497,18 +503,17 @@ template<typename Scalar> void packetmath_real()
} }
} }
template<typename Scalar> void packetmath_notcomplex() template<typename Scalar,typename Packet> void packetmath_notcomplex()
{ {
using std::abs; using std::abs;
typedef internal::packet_traits<Scalar> PacketTraits; typedef internal::packet_traits<Scalar> PacketTraits;
typedef typename PacketTraits::type Packet; const int PacketSize = internal::unpacket_traits<Packet>::size;
const int PacketSize = PacketTraits::size;
EIGEN_ALIGN_MAX Scalar data1[PacketTraits::size*4]; EIGEN_ALIGN_MAX Scalar data1[PacketSize*4];
EIGEN_ALIGN_MAX Scalar data2[PacketTraits::size*4]; EIGEN_ALIGN_MAX Scalar data2[PacketSize*4];
EIGEN_ALIGN_MAX Scalar ref[PacketTraits::size*4]; EIGEN_ALIGN_MAX Scalar ref[PacketSize*4];
Array<Scalar,Dynamic,1>::Map(data1, PacketTraits::size*4).setRandom(); Array<Scalar,Dynamic,1>::Map(data1, PacketSize*4).setRandom();
ref[0] = data1[0]; ref[0] = data1[0];
for (int i=0; i<PacketSize; ++i) for (int i=0; i<PacketSize; ++i)
@ -533,11 +538,9 @@ template<typename Scalar> void packetmath_notcomplex()
VERIFY(areApprox(ref, data2, PacketSize) && "internal::plset"); VERIFY(areApprox(ref, data2, PacketSize) && "internal::plset");
} }
template<typename Scalar,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) template<typename Scalar,typename Packet,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval)
{ {
typedef internal::packet_traits<Scalar> PacketTraits; const int PacketSize = internal::unpacket_traits<Packet>::size;
typedef typename PacketTraits::type Packet;
const int PacketSize = PacketTraits::size;
internal::conj_if<ConjLhs> cj0; internal::conj_if<ConjLhs> cj0;
internal::conj_if<ConjRhs> cj1; internal::conj_if<ConjRhs> cj1;
@ -562,11 +565,9 @@ template<typename Scalar,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar
VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmadd"); VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmadd");
} }
template<typename Scalar> void packetmath_complex() template<typename Scalar,typename Packet> void packetmath_complex()
{ {
typedef internal::packet_traits<Scalar> PacketTraits; const int PacketSize = internal::unpacket_traits<Packet>::size;
typedef typename PacketTraits::type Packet;
const int PacketSize = PacketTraits::size;
const int size = PacketSize*4; const int size = PacketSize*4;
EIGEN_ALIGN_MAX Scalar data1[PacketSize*4]; EIGEN_ALIGN_MAX Scalar data1[PacketSize*4];
@ -580,10 +581,10 @@ template<typename Scalar> void packetmath_complex()
data2[i] = internal::random<Scalar>() * Scalar(1e2); data2[i] = internal::random<Scalar>() * Scalar(1e2);
} }
test_conj_helper<Scalar,false,false> (data1,data2,ref,pval); test_conj_helper<Scalar,Packet,false,false> (data1,data2,ref,pval);
test_conj_helper<Scalar,false,true> (data1,data2,ref,pval); test_conj_helper<Scalar,Packet,false,true> (data1,data2,ref,pval);
test_conj_helper<Scalar,true,false> (data1,data2,ref,pval); test_conj_helper<Scalar,Packet,true,false> (data1,data2,ref,pval);
test_conj_helper<Scalar,true,true> (data1,data2,ref,pval); test_conj_helper<Scalar,Packet,true,true> (data1,data2,ref,pval);
{ {
for(int i=0;i<PacketSize;++i) for(int i=0;i<PacketSize;++i)
@ -593,12 +594,10 @@ template<typename Scalar> void packetmath_complex()
} }
} }
template<typename Scalar> void packetmath_scatter_gather() template<typename Scalar,typename Packet> void packetmath_scatter_gather()
{ {
typedef internal::packet_traits<Scalar> PacketTraits;
typedef typename PacketTraits::type Packet;
typedef typename NumTraits<Scalar>::Real RealScalar; typedef typename NumTraits<Scalar>::Real RealScalar;
const int PacketSize = PacketTraits::size; const int PacketSize = internal::unpacket_traits<Packet>::size;
EIGEN_ALIGN_MAX Scalar data1[PacketSize]; EIGEN_ALIGN_MAX Scalar data1[PacketSize];
RealScalar refvalue = 0; RealScalar refvalue = 0;
for (int i=0; i<PacketSize; ++i) { for (int i=0; i<PacketSize; ++i) {
@ -630,30 +629,86 @@ template<typename Scalar> void packetmath_scatter_gather()
} }
} }
template<
typename Scalar,
typename PacketType,
bool IsComplex = NumTraits<Scalar>::IsComplex,
bool IsInteger = NumTraits<Scalar>::IsInteger>
struct runall;
template<typename Scalar,typename PacketType>
struct runall<Scalar,PacketType,false,false> { // i.e. float or double
static void run() {
packetmath<Scalar,PacketType>();
packetmath_scatter_gather<Scalar,PacketType>();
packetmath_notcomplex<Scalar,PacketType>();
packetmath_real<Scalar,PacketType>();
}
};
template<typename Scalar,typename PacketType>
struct runall<Scalar,PacketType,false,true> { // i.e. int
static void run() {
packetmath<Scalar,PacketType>();
packetmath_scatter_gather<Scalar,PacketType>();
packetmath_notcomplex<Scalar,PacketType>();
}
};
template<typename Scalar,typename PacketType>
struct runall<Scalar,PacketType,true,false> { // i.e. complex
static void run() {
packetmath<Scalar,PacketType>();
packetmath_scatter_gather<Scalar,PacketType>();
packetmath_complex<Scalar,PacketType>();
}
};
template<
typename Scalar,
typename PacketType = typename internal::packet_traits<Scalar>::type,
bool Vectorized = internal::packet_traits<Scalar>::Vectorizable,
bool HasHalf = !internal::is_same<typename internal::unpacket_traits<PacketType>::half,PacketType>::value >
struct runner;
template<typename Scalar,typename PacketType>
struct runner<Scalar,PacketType,true,true>
{
static void run() {
runall<Scalar,PacketType>::run();
runner<Scalar,typename internal::unpacket_traits<PacketType>::half>::run();
}
};
template<typename Scalar,typename PacketType>
struct runner<Scalar,PacketType,true,false>
{
static void run() {
runall<Scalar,PacketType>::run();
runall<Scalar,Scalar>::run();
}
};
template<typename Scalar,typename PacketType>
struct runner<Scalar,PacketType,false,false>
{
static void run() {
runall<Scalar,PacketType>::run();
}
};
EIGEN_DECLARE_TEST(packetmath) EIGEN_DECLARE_TEST(packetmath)
{ {
g_first_pass = true;
for(int i = 0; i < g_repeat; i++) { for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( packetmath<float>() );
CALL_SUBTEST_2( packetmath<double>() ); CALL_SUBTEST_1( runner<float>::run() );
CALL_SUBTEST_3( packetmath<int>() ); CALL_SUBTEST_2( runner<double>::run() );
CALL_SUBTEST_4( packetmath<std::complex<float> >() ); CALL_SUBTEST_3( runner<int>::run() );
CALL_SUBTEST_5( packetmath<std::complex<double> >() ); CALL_SUBTEST_4( runner<std::complex<float> >::run() );
CALL_SUBTEST_6( packetmath<half>() ); CALL_SUBTEST_5( runner<std::complex<double> >::run() );
CALL_SUBTEST_6(( packetmath<half,internal::packet_traits<half>::type>() ));
CALL_SUBTEST_1( packetmath_notcomplex<float>() ); g_first_pass = false;
CALL_SUBTEST_2( packetmath_notcomplex<double>() );
CALL_SUBTEST_3( packetmath_notcomplex<int>() );
CALL_SUBTEST_1( packetmath_real<float>() );
CALL_SUBTEST_2( packetmath_real<double>() );
CALL_SUBTEST_4( packetmath_complex<std::complex<float> >() );
CALL_SUBTEST_5( packetmath_complex<std::complex<double> >() );
CALL_SUBTEST_1( packetmath_scatter_gather<float>() );
CALL_SUBTEST_2( packetmath_scatter_gather<double>() );
CALL_SUBTEST_3( packetmath_scatter_gather<int>() );
CALL_SUBTEST_4( packetmath_scatter_gather<std::complex<float> >() );
CALL_SUBTEST_5( packetmath_scatter_gather<std::complex<double> >() );
} }
} }