Fix pexp complex test edge-cases.

This commit is contained in:
Antonio Sánchez 2024-03-04 17:44:38 +00:00 committed by Rasmus Munk Larsen
parent 251ec42087
commit 38fcedaf8e
3 changed files with 140 additions and 47 deletions

View File

@ -164,7 +164,7 @@ struct imag_ref_default_impl {
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC static inline RealScalar& run(Scalar& x) { return reinterpret_cast<RealScalar*>(&x)[1]; }
EIGEN_DEVICE_FUNC static inline const RealScalar& run(const Scalar& x) {
return reinterpret_cast<RealScalar*>(&x)[1];
return reinterpret_cast<const RealScalar*>(&x)[1];
}
};
@ -1541,6 +1541,25 @@ EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T exp(const T& x) {
return exp(x);
}
// MSVC screws up some edge-cases for std::exp(complex).
#ifdef EIGEN_COMP_MSVC
template <typename RealScalar>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::complex<RealScalar> exp(const std::complex<RealScalar>& x) {
EIGEN_USING_STD(exp);
// If z is (x,±∞) (for any finite x), the result is (NaN,NaN) and FE_INVALID is raised.
// If z is (x,NaN) (for any finite x), the result is (NaN,NaN) and FE_INVALID may be raised.
if ((isfinite)(real_ref(x)) && !(isfinite)(imag_ref(x))) {
return std::complex<RealScalar>(NumTraits<RealScalar>::quiet_NaN(), NumTraits<RealScalar>::quiet_NaN());
}
// If z is (+∞,±∞), the result is (±∞,NaN) and FE_INVALID is raised (the sign of the real part is unspecified)
// If z is (+∞,NaN), the result is (±∞,NaN) (the sign of the real part is unspecified)
if ((real_ref(x) == NumTraits<RealScalar>::infinity() && !(isfinite)(imag_ref(x)))) {
return std::complex<RealScalar>(NumTraits<RealScalar>::infinity(), NumTraits<RealScalar>::quiet_NaN());
}
return exp(x);
}
#endif
#if defined(SYCL_DEVICE_ONLY)
SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(exp, exp)
#endif

View File

@ -1068,40 +1068,39 @@ EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pexp_complex(const Pa
typedef typename unpacket_traits<Packet>::type Scalar;
typedef typename Scalar::value_type RealScalar;
const RealPacket even_mask = peven_mask(a.v);
const Packet even_maskp = Packet(even_mask);
const RealPacket odd_mask = pcplxflip(Packet(even_mask)).v;
Packet p0y = Packet(pand(odd_mask, a.v));
Packet py0 = pcplxflip(p0y);
Packet pyy = padd(p0y, py0);
// Let a = x + iy.
// exp(a) = exp(x) * cis(y), plus some special edge-case handling.
RealPacket sincos = psincos_float<false, RealPacket, true>(pyy.v);
RealPacket cossin = pcplxflip(Packet(sincos)).v;
// exp(x):
RealPacket x = pand(a.v, even_mask);
x = por(x, pcplxflip(Packet(x)).v);
RealPacket expx = pexp(x); // exp(x);
// cis(y):
RealPacket y = pand(odd_mask, a.v);
y = por(y, pcplxflip(Packet(y)).v);
RealPacket cisy = psincos_float<false, RealPacket, true>(y);
cisy = pcplxflip(Packet(cisy)).v; // cos(y) + i * sin(y)
const RealPacket cst_pos_inf = pset1<RealPacket>(NumTraits<RealScalar>::infinity());
const RealPacket cst_neg_inf = pset1<RealPacket>(-NumTraits<RealScalar>::infinity());
Packet x_is_inf = Packet(pcmp_eq(a.v, cst_pos_inf));
Packet x_is_minf = Packet(pcmp_eq(a.v, cst_neg_inf));
Packet x_is_zero = Packet(pcmp_eq(pzero(a).v, a.v));
Packet x_real_is_inf = pand(even_maskp, x_is_inf);
Packet x_real_is_minf = pand(even_maskp, x_is_minf);
Packet inf0 = pset1<Packet>(Scalar(NumTraits<RealScalar>::infinity(), RealScalar(0)));
Packet x_is_inf0 = pand(x_real_is_inf, pcplxflip(x_is_zero));
x_is_inf0 = por(x_is_inf0, pcplxflip(x_is_inf0));
Packet x_imag_goes_zero = pand(por(x_is_minf, x_is_inf), pcplxflip(x_real_is_minf));
Packet x_is_nan = Packet(pisnan(a.v));
Packet x_real_goes_zero = pand(x_is_nan, pcplxflip(x_real_is_minf));
RealPacket pexp_real = pexp(a.v);
Packet pexp_half = Packet(pand(even_mask, pexp_real));
RealPacket xexp_flip_rp = pcplxflip(pexp_half).v;
RealPacket xexp = padd(pexp_half.v, xexp_flip_rp);
Packet result(pmul(cossin, xexp));
// If x is -inf, we know that cossin(y) is bounded,
// so the result is (0, +/-0), where the sign of the imaginary part comes
// from the sign of cossin(y).
RealPacket cisy_sign = por(pandnot(cisy, pabs(cisy)), pset1<RealPacket>(RealScalar(1)));
cisy = pselect(pcmp_eq(x, cst_neg_inf), cisy_sign, cisy);
result = pselect(x_is_inf0, inf0, result);
result = pselect(x_real_is_minf, pzero(a), result);
result = pselect(x_imag_goes_zero, pzero(a), result);
result = pselect(x_real_goes_zero, pzero(a), result);
// If x is inf, and cos(y) has unknown sign (y is inf or NaN), the result
// is (+/-inf, NaN), where the signs are undetermined (take the sign of y).
RealPacket y_sign = por(pandnot(y, pabs(y)), pset1<RealPacket>(RealScalar(1)));
cisy = pselect(pand(pcmp_eq(x, cst_pos_inf), pisnan(cisy)), pand(y_sign, even_mask), cisy);
Packet result = Packet(pmul(expx, cisy));
// If y is +/- 0, the input is real, so take the real result for consistency.
result = pselect(Packet(pcmp_eq(y, pzero(y))), Packet(por(pand(expx, even_mask), pand(y, odd_mask))), result);
return result;
}

View File

@ -277,6 +277,7 @@ struct packetmath_pcast_ops_runner<Scalar, Packet, std::enable_if_t<NumTraits<Sc
template <typename Scalar, typename Packet>
void packetmath_boolean_mask_ops() {
using RealScalar = typename NumTraits<Scalar>::Real;
const int PacketSize = internal::unpacket_traits<Packet>::size;
const int size = 2 * PacketSize;
EIGEN_ALIGN_MAX Scalar data1[size];
@ -289,7 +290,7 @@ void packetmath_boolean_mask_ops() {
CHECK_CWISE1(internal::ptrue, internal::ptrue);
CHECK_CWISE2_IF(true, internal::pandnot, internal::pandnot);
for (int i = 0; i < PacketSize; ++i) {
data1[i] = Scalar(i);
data1[i] = Scalar(RealScalar(i));
data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0);
}
@ -1335,6 +1336,62 @@ void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) {
template <typename Scalar, typename Packet, bool HasExp = internal::packet_traits<Scalar>::HasExp>
struct exp_complex_test_impl {
typedef typename Scalar::value_type RealScalar;
static Scalar pexp1(const Scalar& x) {
Packet px = internal::pset1<Packet>(x);
Packet py = internal::pexp(px);
return internal::pfirst(py);
}
static Scalar cis(const RealScalar& x) { return Scalar(numext::cos(x), numext::sin(x)); }
// Verify equality with signed zero.
static bool is_exactly_equal(const RealScalar& a, const RealScalar& b) {
// NaNs are always unsigned, and always compare not equal directly.
if ((numext::isnan)(a)) {
return (numext::isnan)(b);
}
// Signed zero.
RealScalar zero(0);
if (a == zero) {
// Signs are either 0 or NaN, so verify that their comparisons to zero are equal.
return (a == b) && ((numext::signbit(a) == zero) == (numext::signbit(b) == zero));
}
// Allow _some_ tolerance.
return verifyIsApprox(a, b);
}
// Verify equality with signed zero.
static bool is_exactly_equal(const Scalar& a, const Scalar& b) {
bool result = is_exactly_equal(numext::real_ref(a), numext::real_ref(b)) &&
is_exactly_equal(numext::imag_ref(a), numext::imag_ref(b));
if (!result) {
std::cout << a << " != " << b << std::endl;
}
return result;
}
static bool is_sign_exp_unspecified(const Scalar& z) {
const RealScalar inf = std::numeric_limits<RealScalar>::infinity();
// If z is (-∞,±∞), the result is (±0,±0) (signs are unspecified)
if (numext::real_ref(z) == -inf && (numext::isinf)(numext::imag_ref(z))) {
return true;
}
// If z is (+∞,±∞), the result is (±∞,NaN) and FE_INVALID is raised (the sign of the real part is unspecified)
if (numext::real_ref(z) == +inf && (numext::isinf)(numext::imag_ref(z))) {
return true;
}
// If z is (-∞,NaN), the result is (±0,±0) (signs are unspecified)
if (numext::real_ref(z) == -inf && (numext::isnan)(numext::imag_ref(z))) {
return true;
}
// If z is (+∞,NaN), the result is (±∞,NaN) (the sign of the real part is unspecified)
if (numext::real_ref(z) == +inf && (numext::isnan)(numext::imag_ref(z))) {
return true;
}
return false;
}
static void run(Scalar* data1, Scalar* data2, Scalar* ref, int size) {
const int PacketSize = internal::unpacket_traits<Packet>::size;
@ -1343,27 +1400,45 @@ struct exp_complex_test_impl {
}
CHECK_CWISE1_N(std::exp, internal::pexp, size);
// Test misc. corner cases.
const RealScalar zero = RealScalar(0);
const RealScalar one = RealScalar(1);
const RealScalar inf = std::numeric_limits<RealScalar>::infinity();
const RealScalar nan = std::numeric_limits<RealScalar>::quiet_NaN();
for (RealScalar x : {zero, one, inf}) {
for (RealScalar y : {zero, one, inf}) {
data1[0] = Scalar(x, y);
data1[1] = Scalar(-x, y);
data1[2] = Scalar(x, -y);
data1[3] = Scalar(-x, -y);
CHECK_CWISE1_N(std::exp, internal::pexp, 4);
// Test all corner cases (and more).
const RealScalar edges[] = {RealScalar(0),
RealScalar(1),
RealScalar(2),
RealScalar(EIGEN_PI / 2),
RealScalar(EIGEN_PI),
RealScalar(3 * EIGEN_PI / 2),
RealScalar(2 * EIGEN_PI),
numext::log(NumTraits<RealScalar>::highest()) - 1,
NumTraits<RealScalar>::highest(),
std::numeric_limits<RealScalar>::infinity(),
std::numeric_limits<RealScalar>::quiet_NaN(),
-RealScalar(0),
-RealScalar(1),
-RealScalar(2),
-RealScalar(EIGEN_PI / 2),
-RealScalar(EIGEN_PI),
-RealScalar(3 * EIGEN_PI / 2),
-RealScalar(2 * EIGEN_PI),
-numext::log(NumTraits<RealScalar>::highest()) + 1,
-NumTraits<RealScalar>::highest(),
-std::numeric_limits<RealScalar>::infinity(),
-std::numeric_limits<RealScalar>::quiet_NaN()};
for (RealScalar x : edges) {
for (RealScalar y : edges) {
Scalar z = Scalar(x, y);
Scalar w = pexp1(z);
if (is_sign_exp_unspecified(z)) {
Scalar abs_w = Scalar(numext::abs(numext::real_ref(w)), numext::abs(numext::imag_ref(w)));
Scalar expected = numext::exp(z);
Scalar abs_expected =
Scalar(numext::abs(numext::real_ref(expected)), numext::abs(numext::imag_ref(expected)));
VERIFY(is_exactly_equal(abs_w, abs_expected));
} else {
VERIFY(is_exactly_equal(w, numext::exp(z)));
}
}
}
for (RealScalar x : {zero, one, inf}) {
data1[0] = Scalar(x, nan);
data1[1] = Scalar(-x, nan);
data1[2] = Scalar(nan, x);
data1[3] = Scalar(nan, -x);
CHECK_CWISE1_N(std::exp, internal::pexp, 4);
}
}
};