Fixed a bug in the integer division code that caused some large numerators to be incorrectly handled

This commit is contained in:
Benoit Steiner 2015-07-13 11:14:59 -07:00
parent ea87561564
commit 3912ca0d53
2 changed files with 44 additions and 8 deletions

View File

@ -62,8 +62,11 @@ struct TensorIntDivisor {
// fast ln2
const int leading_zeros = count_leading_zeros(divider);
const int log_div = N - (leading_zeros+1);
int log_div = N - leading_zeros;
// If divider is a power of two then log_div is 1 more than it should be.
if ((1ull << (log_div-1)) == divider) {
log_div--;
}
multiplier = (static_cast<uint64_t>(1) << (N+log_div)) / divider - (static_cast<uint64_t>(1) << N) + 1;
shift1 = log_div > 1 ? 1 : log_div;
shift2 = log_div > 1 ? log_div-1 : 0;

View File

@ -31,12 +31,20 @@ static void test_1d()
vec1(4) = 23.0; vec2(4) = 4.0;
vec1(5) = 42.0; vec2(5) = 5.0;
float data3[6];
TensorMap<TensorFixedSize<float, Sizes<6> > > vec3(data3, 6);
vec3 = vec1.sqrt();
float data4[6];
TensorMap<TensorFixedSize<float, Sizes<6>, RowMajor> > vec4(data4, 6);
vec4 = vec2.sqrt();
// Test against shallow copy.
TensorFixedSize<float, Sizes<6> > copy = vec1;
VERIFY_IS_NOT_EQUAL(vec1.data(), copy.data());
for (int i = 0; i < 6; ++i) {
VERIFY_IS_APPROX(vec1(i), copy(i));
}
copy = vec1;
VERIFY_IS_NOT_EQUAL(vec1.data(), copy.data());
for (int i = 0; i < 6; ++i) {
VERIFY_IS_APPROX(vec1(i), copy(i));
}
TensorFixedSize<float, Sizes<6> > vec3 = vec1.sqrt();
TensorFixedSize<float, Sizes<6>, RowMajor> vec4 = vec2.sqrt();
VERIFY_IS_EQUAL((vec3.size()), 6);
VERIFY_IS_EQUAL(vec3.rank(), 1);
@ -66,6 +74,30 @@ static void test_1d()
VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f);
}
static void test_tensor_map()
{
TensorFixedSize<float, Sizes<6> > vec1;
TensorFixedSize<float, Sizes<6>, RowMajor> vec2;
vec1(0) = 4.0; vec2(0) = 0.0;
vec1(1) = 8.0; vec2(1) = 1.0;
vec1(2) = 15.0; vec2(2) = 2.0;
vec1(3) = 16.0; vec2(3) = 3.0;
vec1(4) = 23.0; vec2(4) = 4.0;
vec1(5) = 42.0; vec2(5) = 5.0;
float data3[6];
TensorMap<TensorFixedSize<float, Sizes<6> > > vec3(data3, 6);
vec3 = vec1.sqrt() + vec2;
VERIFY_IS_APPROX(vec3(0), sqrtf(4.0));
VERIFY_IS_APPROX(vec3(1), sqrtf(8.0) + 1.0f);
VERIFY_IS_APPROX(vec3(2), sqrtf(15.0) + 2.0f);
VERIFY_IS_APPROX(vec3(3), sqrtf(16.0) + 3.0f);
VERIFY_IS_APPROX(vec3(4), sqrtf(23.0) + 4.0f);
VERIFY_IS_APPROX(vec3(5), sqrtf(42.0) + 5.0f);
}
static void test_2d()
{
float data1[6];
@ -192,6 +224,7 @@ static void test_array()
void test_cxx11_tensor_fixed_size()
{
CALL_SUBTEST(test_1d());
CALL_SUBTEST(test_tensor_map());
CALL_SUBTEST(test_2d());
CALL_SUBTEST(test_3d());
CALL_SUBTEST(test_array());