mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-11 19:29:02 +08:00
sparse module: add support for umfpack, the sparse direct LU
solver from suitesparse (as cholmod). It seems to be even faster than SuperLU and it was much simpler to interface ! Well, the factorization is faster, but for the solve part, SuperLU is quite faster. On the other hand the solve part represents only a fraction of the whole procedure. Moreover, I bench random matrices that does not represents real cases, and I'm not sure at all I use both libraries with their best settings !
This commit is contained in:
parent
64f7fbe3f2
commit
3a231c2349
@ -50,6 +50,10 @@
|
||||
namespace Eigen { struct SluMatrix; }
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_UMFPACK_SUPPORT
|
||||
#include "umfpack.h"
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
#include "src/Sparse/SparseUtil.h"
|
||||
@ -79,6 +83,10 @@ namespace Eigen {
|
||||
# include "src/Sparse/SuperLUSupport.h"
|
||||
#endif
|
||||
|
||||
#ifdef EIGEN_UMFPACK_SUPPORT
|
||||
# include "src/Sparse/UmfPackSupport.h"
|
||||
#endif
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_MODULE_H
|
||||
|
@ -311,8 +311,8 @@ void SparseLU<MatrixType,SuperLU>::compute(const MatrixType& a)
|
||||
&m_sluStat, &info, Scalar());
|
||||
StatFree(&m_sluStat);
|
||||
|
||||
// FIXME how to check for errors ???
|
||||
Base::m_succeeded = true;
|
||||
// FIXME how to better check for errors ???
|
||||
Base::m_succeeded = (info == 0);
|
||||
}
|
||||
|
||||
// template<typename MatrixType>
|
||||
@ -362,6 +362,8 @@ bool SparseLU<MatrixType,SuperLU>::solve(const MatrixBase<BDerived> &b, MatrixBa
|
||||
&m_sluFerr[0], &m_sluBerr[0],
|
||||
&m_sluStat, &info, Scalar());
|
||||
StatFree(&m_sluStat);
|
||||
|
||||
return info==0;
|
||||
}
|
||||
|
||||
#endif // EIGEN_SUPERLUSUPPORT_H
|
||||
|
135
Eigen/src/Sparse/UmfPackSupport.h
Normal file
135
Eigen/src/Sparse/UmfPackSupport.h
Normal file
@ -0,0 +1,135 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef EIGEN_UMFPACKSUPPORT_H
|
||||
#define EIGEN_UMFPACKSUPPORT_H
|
||||
|
||||
template<typename MatrixType>
|
||||
class SparseLU<MatrixType,UmfPack> : public SparseLU<MatrixType>
|
||||
{
|
||||
protected:
|
||||
typedef SparseLU<MatrixType> Base;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::RealScalar RealScalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> Vector;
|
||||
using Base::m_flags;
|
||||
using Base::m_status;
|
||||
|
||||
public:
|
||||
|
||||
SparseLU(int flags = NaturalOrdering)
|
||||
: Base(flags), m_numeric(0)
|
||||
{
|
||||
}
|
||||
|
||||
SparseLU(const MatrixType& matrix, int flags = NaturalOrdering)
|
||||
: Base(flags), m_numeric(0)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
~SparseLU()
|
||||
{
|
||||
if (m_numeric)
|
||||
umfpack_di_free_numeric(&m_numeric);
|
||||
}
|
||||
|
||||
template<typename BDerived, typename XDerived>
|
||||
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const;
|
||||
|
||||
void compute(const MatrixType& matrix);
|
||||
|
||||
protected:
|
||||
// cached data:
|
||||
void* m_numeric;
|
||||
const MatrixType* m_matrixRef;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
void SparseLU<MatrixType,UmfPack>::compute(const MatrixType& a)
|
||||
{
|
||||
const int size = a.rows();
|
||||
ei_assert((MatrixType::Flags&RowMajorBit)==0);
|
||||
|
||||
m_matrixRef = &a;
|
||||
|
||||
if (m_numeric)
|
||||
umfpack_di_free_numeric(&m_numeric);
|
||||
|
||||
void* symbolic;
|
||||
int errorCode = 0;
|
||||
errorCode = umfpack_di_symbolic(size, size, a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(),
|
||||
&symbolic, 0, 0);
|
||||
if (errorCode==0)
|
||||
errorCode = umfpack_di_numeric(a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(),
|
||||
symbolic, &m_numeric, 0, 0);
|
||||
|
||||
umfpack_di_free_symbolic(&symbolic);
|
||||
|
||||
Base::m_succeeded = (errorCode==0);
|
||||
}
|
||||
|
||||
// template<typename MatrixType>
|
||||
// inline const MatrixType&
|
||||
// SparseLU<MatrixType,SuperLU>::matrixL() const
|
||||
// {
|
||||
// ei_assert(false && "matrixL() is Not supported by the SuperLU backend");
|
||||
// return m_matrix;
|
||||
// }
|
||||
//
|
||||
// template<typename MatrixType>
|
||||
// inline const MatrixType&
|
||||
// SparseLU<MatrixType,SuperLU>::matrixU() const
|
||||
// {
|
||||
// ei_assert(false && "matrixU() is Not supported by the SuperLU backend");
|
||||
// return m_matrix;
|
||||
// }
|
||||
|
||||
template<typename MatrixType>
|
||||
template<typename BDerived,typename XDerived>
|
||||
bool SparseLU<MatrixType,UmfPack>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> *x) const
|
||||
{
|
||||
//const int size = m_matrix.rows();
|
||||
const int rhsCols = b.cols();
|
||||
// ei_assert(size==b.rows());
|
||||
ei_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major rhs yet");
|
||||
ei_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major result yet");
|
||||
|
||||
int errorCode;
|
||||
for (int j=0; j<rhsCols; ++j)
|
||||
{
|
||||
errorCode = umfpack_di_solve(UMFPACK_A,
|
||||
m_matrixRef->_outerIndexPtr(), m_matrixRef->_innerIndexPtr(), m_matrixRef->_valuePtr(),
|
||||
&x->col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
|
||||
if (errorCode!=0)
|
||||
return false;
|
||||
}
|
||||
// errorCode = umfpack_di_solve(UMFPACK_A,
|
||||
// m_matrixRef._outerIndexPtr(), m_matrixRef._innerIndexPtr(), m_matrixRef._valuePtr(),
|
||||
// x->derived().data(), b.derived().data(), m_numeric, 0, 0);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // EIGEN_UMFPACKSUPPORT_H
|
@ -1,9 +1,8 @@
|
||||
|
||||
// g++ -I.. sparse_lu.cpp -O3 -g0 -I /usr/include/superlu/ -lsuperlu -lgfortran -DSIZE=1000 -DDENSITY=.05 && ./a.out
|
||||
|
||||
// #define EIGEN_TAUCS_SUPPORT
|
||||
// #define EIGEN_CHOLMOD_SUPPORT
|
||||
#define EIGEN_SUPERLU_SUPPORT
|
||||
#define EIGEN_UMFPACK_SUPPORT
|
||||
#include <Eigen/Sparse>
|
||||
|
||||
#define NOGMM
|
||||
@ -43,6 +42,33 @@ typedef Matrix<Scalar,Dynamic,1> VectorX;
|
||||
|
||||
#include <Eigen/LU>
|
||||
|
||||
template<int Backend>
|
||||
void doEigen(const char* name, const EigenSparseMatrix& sm1, const VectorX& b, VectorX& x, int flags = 0)
|
||||
{
|
||||
std::cout << name << "..." << std::flush;
|
||||
BenchTimer timer; timer.start();
|
||||
SparseLU<EigenSparseMatrix,Backend> lu(sm1, flags);
|
||||
timer.stop();
|
||||
if (lu.succeeded())
|
||||
std::cout << ":\t" << timer.value() << endl;
|
||||
else
|
||||
{
|
||||
std::cout << ":\t FAILED" << endl;
|
||||
return;
|
||||
}
|
||||
|
||||
bool ok;
|
||||
timer.reset(); timer.start();
|
||||
ok = lu.solve(b,&x);
|
||||
timer.stop();
|
||||
if (ok)
|
||||
std::cout << " solve:\t" << timer.value() << endl;
|
||||
else
|
||||
std::cout << " solve:\t" << " FAILED" << endl;
|
||||
|
||||
//std::cout << x.transpose() << "\n";
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
int rows = SIZE;
|
||||
@ -82,28 +108,22 @@ int main(int argc, char *argv[])
|
||||
timer.stop();
|
||||
std::cout << " solve:\t" << timer.value() << endl;
|
||||
// std::cout << b.transpose() << "\n";
|
||||
std::cout << x.transpose() << "\n";
|
||||
// std::cout << x.transpose() << "\n";
|
||||
}
|
||||
#endif
|
||||
|
||||
// eigen sparse matrices
|
||||
{
|
||||
x.setZero();
|
||||
BenchTimer timer;
|
||||
timer.start();
|
||||
SparseLU<EigenSparseMatrix,SuperLU> lu(sm1);
|
||||
timer.stop();
|
||||
std::cout << "Eigen/SuperLU:\t" << timer.value() << endl;
|
||||
#ifdef EIGEN_SUPERLU_SUPPORT
|
||||
x.setZero();
|
||||
doEigen<Eigen::SuperLU>("Eigen/SuperLU (nat)", sm1, b, x, Eigen::NaturalOrdering);
|
||||
// doEigen<Eigen::SuperLU>("Eigen/SuperLU (MD AT+A)", sm1, b, x, Eigen::MinimumDegree_AT_PLUS_A);
|
||||
// doEigen<Eigen::SuperLU>("Eigen/SuperLU (MD ATA)", sm1, b, x, Eigen::MinimumDegree_ATA);
|
||||
doEigen<Eigen::SuperLU>("Eigen/SuperLU (COLAMD)", sm1, b, x, Eigen::ColApproxMinimumDegree);
|
||||
#endif
|
||||
|
||||
timer.reset();
|
||||
timer.start();
|
||||
lu.solve(b,&x);
|
||||
timer.stop();
|
||||
std::cout << " solve:\t" << timer.value() << endl;
|
||||
|
||||
std::cout << x.transpose() << "\n";
|
||||
|
||||
}
|
||||
#ifdef EIGEN_UMFPACK_SUPPORT
|
||||
x.setZero();
|
||||
doEigen<Eigen::UmfPack>("Eigen/UmfPack (auto)", sm1, b, x, 0);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user