sparse module: add support for umfpack, the sparse direct LU

solver from suitesparse (as cholmod). It seems to be even faster
than SuperLU and it was much simpler to interface ! Well,
the factorization is faster, but for the solve part, SuperLU is
quite faster. On the other hand the solve part represents only a
fraction of the whole procedure. Moreover, I bench random matrices
that does not represents real cases, and I'm not sure at all
I use both libraries with their best settings !
This commit is contained in:
Gael Guennebaud 2008-10-19 22:44:21 +00:00
parent 64f7fbe3f2
commit 3a231c2349
4 changed files with 187 additions and 22 deletions

View File

@ -50,6 +50,10 @@
namespace Eigen { struct SluMatrix; }
#endif
#ifdef EIGEN_UMFPACK_SUPPORT
#include "umfpack.h"
#endif
namespace Eigen {
#include "src/Sparse/SparseUtil.h"
@ -79,6 +83,10 @@ namespace Eigen {
# include "src/Sparse/SuperLUSupport.h"
#endif
#ifdef EIGEN_UMFPACK_SUPPORT
# include "src/Sparse/UmfPackSupport.h"
#endif
} // namespace Eigen
#endif // EIGEN_SPARSE_MODULE_H

View File

@ -311,8 +311,8 @@ void SparseLU<MatrixType,SuperLU>::compute(const MatrixType& a)
&m_sluStat, &info, Scalar());
StatFree(&m_sluStat);
// FIXME how to check for errors ???
Base::m_succeeded = true;
// FIXME how to better check for errors ???
Base::m_succeeded = (info == 0);
}
// template<typename MatrixType>
@ -362,6 +362,8 @@ bool SparseLU<MatrixType,SuperLU>::solve(const MatrixBase<BDerived> &b, MatrixBa
&m_sluFerr[0], &m_sluBerr[0],
&m_sluStat, &info, Scalar());
StatFree(&m_sluStat);
return info==0;
}
#endif // EIGEN_SUPERLUSUPPORT_H

View File

@ -0,0 +1,135 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_UMFPACKSUPPORT_H
#define EIGEN_UMFPACKSUPPORT_H
template<typename MatrixType>
class SparseLU<MatrixType,UmfPack> : public SparseLU<MatrixType>
{
protected:
typedef SparseLU<MatrixType> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
using Base::m_flags;
using Base::m_status;
public:
SparseLU(int flags = NaturalOrdering)
: Base(flags), m_numeric(0)
{
}
SparseLU(const MatrixType& matrix, int flags = NaturalOrdering)
: Base(flags), m_numeric(0)
{
compute(matrix);
}
~SparseLU()
{
if (m_numeric)
umfpack_di_free_numeric(&m_numeric);
}
template<typename BDerived, typename XDerived>
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const;
void compute(const MatrixType& matrix);
protected:
// cached data:
void* m_numeric;
const MatrixType* m_matrixRef;
};
template<typename MatrixType>
void SparseLU<MatrixType,UmfPack>::compute(const MatrixType& a)
{
const int size = a.rows();
ei_assert((MatrixType::Flags&RowMajorBit)==0);
m_matrixRef = &a;
if (m_numeric)
umfpack_di_free_numeric(&m_numeric);
void* symbolic;
int errorCode = 0;
errorCode = umfpack_di_symbolic(size, size, a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(),
&symbolic, 0, 0);
if (errorCode==0)
errorCode = umfpack_di_numeric(a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(),
symbolic, &m_numeric, 0, 0);
umfpack_di_free_symbolic(&symbolic);
Base::m_succeeded = (errorCode==0);
}
// template<typename MatrixType>
// inline const MatrixType&
// SparseLU<MatrixType,SuperLU>::matrixL() const
// {
// ei_assert(false && "matrixL() is Not supported by the SuperLU backend");
// return m_matrix;
// }
//
// template<typename MatrixType>
// inline const MatrixType&
// SparseLU<MatrixType,SuperLU>::matrixU() const
// {
// ei_assert(false && "matrixU() is Not supported by the SuperLU backend");
// return m_matrix;
// }
template<typename MatrixType>
template<typename BDerived,typename XDerived>
bool SparseLU<MatrixType,UmfPack>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> *x) const
{
//const int size = m_matrix.rows();
const int rhsCols = b.cols();
// ei_assert(size==b.rows());
ei_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major rhs yet");
ei_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major result yet");
int errorCode;
for (int j=0; j<rhsCols; ++j)
{
errorCode = umfpack_di_solve(UMFPACK_A,
m_matrixRef->_outerIndexPtr(), m_matrixRef->_innerIndexPtr(), m_matrixRef->_valuePtr(),
&x->col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
if (errorCode!=0)
return false;
}
// errorCode = umfpack_di_solve(UMFPACK_A,
// m_matrixRef._outerIndexPtr(), m_matrixRef._innerIndexPtr(), m_matrixRef._valuePtr(),
// x->derived().data(), b.derived().data(), m_numeric, 0, 0);
return true;
}
#endif // EIGEN_UMFPACKSUPPORT_H

View File

@ -1,9 +1,8 @@
// g++ -I.. sparse_lu.cpp -O3 -g0 -I /usr/include/superlu/ -lsuperlu -lgfortran -DSIZE=1000 -DDENSITY=.05 && ./a.out
// #define EIGEN_TAUCS_SUPPORT
// #define EIGEN_CHOLMOD_SUPPORT
#define EIGEN_SUPERLU_SUPPORT
#define EIGEN_UMFPACK_SUPPORT
#include <Eigen/Sparse>
#define NOGMM
@ -43,6 +42,33 @@ typedef Matrix<Scalar,Dynamic,1> VectorX;
#include <Eigen/LU>
template<int Backend>
void doEigen(const char* name, const EigenSparseMatrix& sm1, const VectorX& b, VectorX& x, int flags = 0)
{
std::cout << name << "..." << std::flush;
BenchTimer timer; timer.start();
SparseLU<EigenSparseMatrix,Backend> lu(sm1, flags);
timer.stop();
if (lu.succeeded())
std::cout << ":\t" << timer.value() << endl;
else
{
std::cout << ":\t FAILED" << endl;
return;
}
bool ok;
timer.reset(); timer.start();
ok = lu.solve(b,&x);
timer.stop();
if (ok)
std::cout << " solve:\t" << timer.value() << endl;
else
std::cout << " solve:\t" << " FAILED" << endl;
//std::cout << x.transpose() << "\n";
}
int main(int argc, char *argv[])
{
int rows = SIZE;
@ -82,28 +108,22 @@ int main(int argc, char *argv[])
timer.stop();
std::cout << " solve:\t" << timer.value() << endl;
// std::cout << b.transpose() << "\n";
std::cout << x.transpose() << "\n";
// std::cout << x.transpose() << "\n";
}
#endif
// eigen sparse matrices
{
x.setZero();
BenchTimer timer;
timer.start();
SparseLU<EigenSparseMatrix,SuperLU> lu(sm1);
timer.stop();
std::cout << "Eigen/SuperLU:\t" << timer.value() << endl;
#ifdef EIGEN_SUPERLU_SUPPORT
x.setZero();
doEigen<Eigen::SuperLU>("Eigen/SuperLU (nat)", sm1, b, x, Eigen::NaturalOrdering);
// doEigen<Eigen::SuperLU>("Eigen/SuperLU (MD AT+A)", sm1, b, x, Eigen::MinimumDegree_AT_PLUS_A);
// doEigen<Eigen::SuperLU>("Eigen/SuperLU (MD ATA)", sm1, b, x, Eigen::MinimumDegree_ATA);
doEigen<Eigen::SuperLU>("Eigen/SuperLU (COLAMD)", sm1, b, x, Eigen::ColApproxMinimumDegree);
#endif
timer.reset();
timer.start();
lu.solve(b,&x);
timer.stop();
std::cout << " solve:\t" << timer.value() << endl;
std::cout << x.transpose() << "\n";
}
#ifdef EIGEN_UMFPACK_SUPPORT
x.setZero();
doEigen<Eigen::UmfPack>("Eigen/UmfPack (auto)", sm1, b, x, 0);
#endif
}