Simplify class hierarchy.

This commit is contained in:
Chen-Pang He 2013-07-04 05:10:43 +08:00
parent eaf92ef48c
commit 3cda1deb52

View File

@ -12,14 +12,16 @@
namespace Eigen {
template<typename MatrixPowerType>
class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixPowerType> >
template<typename MatrixType> class MatrixPower;
template<typename MatrixType>
class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> >
{
public:
typedef typename MatrixPowerType::PlainObject::RealScalar RealScalar;
typedef typename MatrixPowerType::PlainObject::Index Index;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
MatrixPowerRetval(MatrixPowerType& pow, RealScalar p) : m_pow(pow), m_p(p)
MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
{ }
template<typename ResultType>
@ -30,7 +32,7 @@ class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixPowerTyp
Index cols() const { return m_pow.cols(); }
private:
MatrixPowerType& m_pow;
MatrixPower<MatrixType>& m_pow;
const RealScalar m_p;
MatrixPowerRetval& operator=(const MatrixPowerRetval&);
};
@ -276,7 +278,6 @@ class MatrixPower
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
@ -285,8 +286,6 @@ class MatrixPower
typedef typename MatrixType::Index Index;
public:
typedef MatrixType PlainObject;
/**
* \brief Constructor.
*
@ -305,8 +304,8 @@ class MatrixPower
* \return The expression \f$ A^p \f$, where A is specified in the
* constructor.
*/
const MatrixPowerRetval<MatrixPower> operator()(RealScalar p)
{ return MatrixPowerRetval<MatrixPower>(*this, p); }
const MatrixPowerRetval<MatrixType> operator()(RealScalar p)
{ return MatrixPowerRetval<MatrixType>(*this, p); }
/**
* \brief Compute the matrix power.
@ -315,15 +314,16 @@ class MatrixPower
* \param[out] res \f$ A^p \f$ where A is specified in the
* constructor.
*/
void compute(MatrixType& res, RealScalar p);
template<typename ResultType>
void compute(ResultType& res, RealScalar p);
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
private:
typedef std::complex<RealScalar> ComplexScalar;
typedef Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime,
MaxColsAtCompileTime > ComplexMatrix;
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, MatrixType::Options,
MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrix;
typename MatrixType::Nested m_A;
MatrixType m_tmp;
@ -338,21 +338,22 @@ class MatrixPower
template<typename ResultType>
void computeFracPower(ResultType&, RealScalar);
template<int Rows, int Cols, int Opt, int MaxRows, int MaxCols>
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
static void revertSchur(
Matrix< ComplexScalar, Rows, Cols, Opt, MaxRows, MaxCols >& res,
Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
const ComplexMatrix& T,
const ComplexMatrix& U);
template<int Rows, int Cols, int Opt, int MaxRows, int MaxCols>
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
static void revertSchur(
Matrix< RealScalar, Rows, Cols, Opt, MaxRows, MaxCols >& res,
Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
const ComplexMatrix& T,
const ComplexMatrix& U);
};
template<typename MatrixType>
void MatrixPower<MatrixType>::compute(MatrixType& res, RealScalar p)
template<typename ResultType>
void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
{
switch (cols()) {
case 0:
@ -423,17 +424,17 @@ void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
}
template<typename MatrixType>
template<int Rows, int Cols, int Opt, int MaxRows, int MaxCols>
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
inline void MatrixPower<MatrixType>::revertSchur(
Matrix< ComplexScalar, Rows, Cols, Opt, MaxRows, MaxCols >& res,
Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
const ComplexMatrix& T,
const ComplexMatrix& U)
{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
template<typename MatrixType>
template<int Rows, int Cols, int Opt, int MaxRows, int MaxCols>
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
inline void MatrixPower<MatrixType>::revertSchur(
Matrix< RealScalar, Rows, Cols, Opt, MaxRows, MaxCols >& res,
Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
const ComplexMatrix& T,
const ComplexMatrix& U)
{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }