mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-12 09:23:12 +08:00
MINRES, bug #715: add support for zero rhs, and remove square test.
This commit is contained in:
parent
dead9085c0
commit
3e42b775ea
@ -37,22 +37,31 @@ namespace Eigen {
|
||||
typedef typename Dest::Scalar Scalar;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
|
||||
// Check for zero rhs
|
||||
const RealScalar rhsNorm2(rhs.squaredNorm());
|
||||
if(rhsNorm2 == 0)
|
||||
{
|
||||
x.setZero();
|
||||
iters = 0;
|
||||
tol_error = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
// initialize
|
||||
const int maxIters(iters); // initialize maxIters to iters
|
||||
const int N(mat.cols()); // the size of the matrix
|
||||
const RealScalar rhsNorm2(rhs.squaredNorm());
|
||||
const RealScalar threshold2(tol_error*tol_error*rhsNorm2); // convergence threshold (compared to residualNorm2)
|
||||
|
||||
// Initialize preconditioned Lanczos
|
||||
// VectorType v_old(N); // will be initialized inside loop
|
||||
VectorType v_old(N); // will be initialized inside loop
|
||||
VectorType v( VectorType::Zero(N) ); //initialize v
|
||||
VectorType v_new(rhs-mat*x); //initialize v_new
|
||||
RealScalar residualNorm2(v_new.squaredNorm());
|
||||
// VectorType w(N); // will be initialized inside loop
|
||||
VectorType w(N); // will be initialized inside loop
|
||||
VectorType w_new(precond.solve(v_new)); // initialize w_new
|
||||
// RealScalar beta; // will be initialized inside loop
|
||||
RealScalar beta_new2(v_new.dot(w_new));
|
||||
eigen_assert(beta_new2 >= 0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||||
eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||||
RealScalar beta_new(sqrt(beta_new2));
|
||||
const RealScalar beta_one(beta_new);
|
||||
v_new /= beta_new;
|
||||
@ -62,14 +71,14 @@ namespace Eigen {
|
||||
RealScalar c_old(1.0);
|
||||
RealScalar s(0.0); // the sine of the Givens rotation
|
||||
RealScalar s_old(0.0); // the sine of the Givens rotation
|
||||
// VectorType p_oold(N); // will be initialized in loop
|
||||
VectorType p_oold(N); // will be initialized in loop
|
||||
VectorType p_old(VectorType::Zero(N)); // initialize p_old=0
|
||||
VectorType p(p_old); // initialize p=0
|
||||
RealScalar eta(1.0);
|
||||
|
||||
iters = 0; // reset iters
|
||||
while ( iters < maxIters ){
|
||||
|
||||
while ( iters < maxIters )
|
||||
{
|
||||
// Preconditioned Lanczos
|
||||
/* Note that there are 4 variants on the Lanczos algorithm. These are
|
||||
* described in Paige, C. C. (1972). Computational variants of
|
||||
@ -81,17 +90,17 @@ namespace Eigen {
|
||||
* A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM (1987).
|
||||
*/
|
||||
const RealScalar beta(beta_new);
|
||||
// v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
|
||||
const VectorType v_old(v); // NOT SURE IF CREATING v_old EVERY ITERATION IS EFFICIENT
|
||||
v_old = v; // update: at first time step, this makes v_old = 0 so value of beta doesn't matter
|
||||
// const VectorType v_old(v); // NOT SURE IF CREATING v_old EVERY ITERATION IS EFFICIENT
|
||||
v = v_new; // update
|
||||
// w = w_new; // update
|
||||
const VectorType w(w_new); // NOT SURE IF CREATING w EVERY ITERATION IS EFFICIENT
|
||||
w = w_new; // update
|
||||
// const VectorType w(w_new); // NOT SURE IF CREATING w EVERY ITERATION IS EFFICIENT
|
||||
v_new.noalias() = mat*w - beta*v_old; // compute v_new
|
||||
const RealScalar alpha = v_new.dot(w);
|
||||
v_new -= alpha*v; // overwrite v_new
|
||||
w_new = precond.solve(v_new); // overwrite w_new
|
||||
beta_new2 = v_new.dot(w_new); // compute beta_new
|
||||
eigen_assert(beta_new2 >= 0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||||
eigen_assert(beta_new2 >= 0.0 && "PRECONDITIONER IS NOT POSITIVE DEFINITE");
|
||||
beta_new = sqrt(beta_new2); // compute beta_new
|
||||
v_new /= beta_new; // overwrite v_new for next iteration
|
||||
w_new /= beta_new; // overwrite w_new for next iteration
|
||||
@ -107,28 +116,34 @@ namespace Eigen {
|
||||
s=beta_new/r1; // new sine
|
||||
|
||||
// Update solution
|
||||
// p_oold = p_old;
|
||||
const VectorType p_oold(p_old); // NOT SURE IF CREATING p_oold EVERY ITERATION IS EFFICIENT
|
||||
p_oold = p_old;
|
||||
// const VectorType p_oold(p_old); // NOT SURE IF CREATING p_oold EVERY ITERATION IS EFFICIENT
|
||||
p_old = p;
|
||||
p.noalias()=(w-r2*p_old-r3*p_oold) /r1; // IS NOALIAS REQUIRED?
|
||||
x += beta_one*c*eta*p;
|
||||
|
||||
/* Update the squared residual. Note that this is the estimated residual.
|
||||
The real residual |Ax-b|^2 may be slightly larger */
|
||||
residualNorm2 *= s*s;
|
||||
|
||||
if ( residualNorm2 < threshold2){
|
||||
if ( residualNorm2 < threshold2)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
eta=-s*eta; // update eta
|
||||
iters++; // increment iteration number (for output purposes)
|
||||
}
|
||||
tol_error = std::sqrt(residualNorm2 / rhsNorm2); // return error. Note that this is the estimated error. The real error |Ax-b|/|b| may be slightly larger
|
||||
|
||||
/* Compute error. Note that this is the estimated error. The real
|
||||
error |Ax-b|/|b| may be slightly larger */
|
||||
tol_error = std::sqrt(residualNorm2 / rhsNorm2);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template< typename _MatrixType, int _UpLo=Lower,
|
||||
typename _Preconditioner = IdentityPreconditioner>
|
||||
// typename _Preconditioner = IdentityPreconditioner<typename _MatrixType::Scalar> > // preconditioner must be positive definite
|
||||
class MINRES;
|
||||
|
||||
namespace internal {
|
||||
|
@ -1,8 +1,8 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
|
||||
// Copyright (C) 2012 Giacomo Po <gpo@ucla.edu>
|
||||
// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
@ -14,19 +14,29 @@
|
||||
|
||||
template<typename T> void test_minres_T()
|
||||
{
|
||||
MINRES<SparseMatrix<T>, Lower, DiagonalPreconditioner<T> > minres_colmajor_diag;
|
||||
MINRES<SparseMatrix<T>, Lower, IdentityPreconditioner > minres_colmajor_I;
|
||||
// MINRES<SparseMatrix<T>, Lower, IncompleteLUT<T> > minres_colmajor_ilut;
|
||||
//minres<SparseMatrix<T>, SSORPreconditioner<T> > minres_colmajor_ssor;
|
||||
// Identity preconditioner
|
||||
MINRES<SparseMatrix<T>, Lower, IdentityPreconditioner > minres_colmajor_lower_I;
|
||||
MINRES<SparseMatrix<T>, Upper, IdentityPreconditioner > minres_colmajor_upper_I;
|
||||
|
||||
// Diagonal preconditioner
|
||||
MINRES<SparseMatrix<T>, Lower, DiagonalPreconditioner<T> > minres_colmajor_lower_diag;
|
||||
MINRES<SparseMatrix<T>, Upper, DiagonalPreconditioner<T> > minres_colmajor_upper_diag;
|
||||
|
||||
// call tests for SPD matrix
|
||||
CALL_SUBTEST( check_sparse_spd_solving(minres_colmajor_lower_I) );
|
||||
CALL_SUBTEST( check_sparse_spd_solving(minres_colmajor_upper_I) );
|
||||
|
||||
CALL_SUBTEST( check_sparse_spd_solving(minres_colmajor_lower_diag) );
|
||||
CALL_SUBTEST( check_sparse_spd_solving(minres_colmajor_upper_diag) );
|
||||
|
||||
// TO DO: symmetric semi-definite matrix
|
||||
// TO DO: symmetric indefinite matrix
|
||||
|
||||
CALL_SUBTEST( check_sparse_square_solving(minres_colmajor_diag) );
|
||||
CALL_SUBTEST( check_sparse_spd_solving(minres_colmajor_I) );
|
||||
// CALL_SUBTEST( check_sparse_square_solving(minres_colmajor_ilut) );
|
||||
//CALL_SUBTEST( check_sparse_square_solving(minres_colmajor_ssor) );
|
||||
}
|
||||
|
||||
void test_minres()
|
||||
{
|
||||
CALL_SUBTEST_1(test_minres_T<double>());
|
||||
// CALL_SUBTEST_2(test_minres_T<std::complex<double> >());
|
||||
// CALL_SUBTEST_2(test_minres_T<std::compex<double> >());
|
||||
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user