mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-19 16:19:37 +08:00
Fix a bug in the implementation of Carmack's fast sqrt algorithm in Eigen (enabled by EIGEN_FAST_MATH), which causes the vectorized parts of the computation to return -0.0 instead of NaN for negative arguments.
Benchmark speed in Giga-sqrts/s Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz ----------------------------------------- SSE AVX Fast=1 2.529G 4.380G Fast=0 1.944G 1.898G Fast=1 fixed 2.214G 3.739G This table illustrates the worst case in terms speed impact: It was measured by repeatedly computing the sqrt of an n=4096 float vector that fits in L1 cache. For large vectors the operation becomes memory bound and the differences between the different versions almost negligible.
This commit is contained in:
parent
6af5ac7e27
commit
3ed67cb0bb
@ -362,23 +362,17 @@ pexp<Packet4d>(const Packet4d& _x) {
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
||||
psqrt<Packet8f>(const Packet8f& _x) {
|
||||
_EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
|
||||
_EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
|
||||
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
|
||||
|
||||
Packet8f neg_half = pmul(_x, p8f_minus_half);
|
||||
|
||||
// select only the inverse sqrt of positive normal inputs (denormals are
|
||||
// flushed to zero and cause infs as well).
|
||||
Packet8f non_zero_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_GE_OQ);
|
||||
Packet8f x = _mm256_and_ps(non_zero_mask, _mm256_rsqrt_ps(_x));
|
||||
Packet8f half = pmul(_x, pset1<Packet8f>(.5f));
|
||||
Packet8f denormal_mask = _mm256_and_ps(
|
||||
_mm256_cmpge_ps(_x, _mm256_setzero_ps()),
|
||||
_mm256_cmplt_ps(_x, pset1<Packet8f>((std::numeric_limits<float>::min)())));
|
||||
|
||||
// Compute approximate reciprocal sqrt.
|
||||
Packet8f x = _mm256_rsqrt_ps(_x);
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), p8f_one_point_five));
|
||||
|
||||
// Multiply the original _x by it's reciprocal square root to extract the
|
||||
// square root.
|
||||
return pmul(_x, x);
|
||||
x = pmul(x, psub(pset1<Packet8f>(1.5f), pmul(half, pmul(x,x))));
|
||||
// Flush results for denormals to zero.
|
||||
return _mm256_andnot_ps(denormal_mask, pmul(_x,x));
|
||||
}
|
||||
#else
|
||||
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
|
@ -32,7 +32,7 @@ Packet4f plog<Packet4f>(const Packet4f& _x)
|
||||
/* the smallest non denormalized float number */
|
||||
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos, 0x00800000);
|
||||
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf, 0xff800000);//-1.f/0.f);
|
||||
|
||||
|
||||
/* natural logarithm computed for 4 simultaneous float
|
||||
return NaN for x <= 0
|
||||
*/
|
||||
@ -451,18 +451,21 @@ template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet4f psqrt<Packet4f>(const Packet4f& _x)
|
||||
{
|
||||
Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
|
||||
Packet4f denormal_mask = _mm_and_ps(
|
||||
_mm_cmpge_ps(_x, _mm_setzero_ps()),
|
||||
_mm_cmplt_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)())));
|
||||
|
||||
/* select only the inverse sqrt of non-zero inputs */
|
||||
Packet4f non_zero_mask = _mm_cmpge_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)()));
|
||||
Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));
|
||||
|
||||
// Compute approximate reciprocal sqrt.
|
||||
Packet4f x = _mm_rsqrt_ps(_x);
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
|
||||
return pmul(_x,x);
|
||||
// Flush results for denormals to zero.
|
||||
return _mm_andnot_ps(denormal_mask, pmul(_x,x));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
template<>EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
template<>EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); }
|
||||
|
||||
#endif
|
||||
@ -491,7 +494,7 @@ Packet4f prsqrt<Packet4f>(const Packet4f& _x) {
|
||||
Packet4f neg_mask = _mm_cmplt_ps(_x, _mm_setzero_ps());
|
||||
Packet4f zero_mask = _mm_andnot_ps(neg_mask, le_zero_mask);
|
||||
Packet4f infs_and_nans = _mm_or_ps(_mm_and_ps(neg_mask, p4f_nan),
|
||||
_mm_and_ps(zero_mask, p4f_inf));
|
||||
_mm_and_ps(zero_mask, p4f_inf));
|
||||
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), p4f_one_point_five));
|
||||
|
@ -193,7 +193,7 @@ template<typename Scalar> void packetmath()
|
||||
internal::pstore(data2+3*PacketSize, A3);
|
||||
VERIFY(areApprox(ref, data2, 4*PacketSize) && "internal::pbroadcast4");
|
||||
}
|
||||
|
||||
|
||||
{
|
||||
for (int i=0; i<PacketSize*2; ++i)
|
||||
ref[i] = data1[i/PacketSize];
|
||||
@ -203,9 +203,9 @@ template<typename Scalar> void packetmath()
|
||||
internal::pstore(data2+1*PacketSize, A1);
|
||||
VERIFY(areApprox(ref, data2, 2*PacketSize) && "internal::pbroadcast2");
|
||||
}
|
||||
|
||||
|
||||
VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst");
|
||||
|
||||
|
||||
if(PacketSize>1)
|
||||
{
|
||||
for(int offset=0;offset<4;++offset)
|
||||
@ -315,7 +315,7 @@ template<typename Scalar> void packetmath_real()
|
||||
CHECK_CWISE1_IF(PacketTraits::HasRound, numext::round, internal::pround);
|
||||
CHECK_CWISE1_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil);
|
||||
CHECK_CWISE1_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor);
|
||||
|
||||
|
||||
for (int i=0; i<size; ++i)
|
||||
{
|
||||
data1[i] = internal::random<Scalar>(-1,1);
|
||||
@ -440,12 +440,9 @@ template<typename Scalar> void packetmath_real()
|
||||
data1[0] = Scalar(-1.0f);
|
||||
h.store(data2, internal::plog(h.load(data1)));
|
||||
VERIFY((numext::isnan)(data2[0]));
|
||||
#if !EIGEN_FAST_MATH
|
||||
h.store(data2, internal::psqrt(h.load(data1)));
|
||||
VERIFY((numext::isnan)(data2[0]));
|
||||
VERIFY((numext::isnan)(data2[1]));
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
@ -459,7 +456,7 @@ template<typename Scalar> void packetmath_notcomplex()
|
||||
EIGEN_ALIGN_MAX Scalar data1[PacketTraits::size*4];
|
||||
EIGEN_ALIGN_MAX Scalar data2[PacketTraits::size*4];
|
||||
EIGEN_ALIGN_MAX Scalar ref[PacketTraits::size*4];
|
||||
|
||||
|
||||
Array<Scalar,Dynamic,1>::Map(data1, PacketTraits::size*4).setRandom();
|
||||
|
||||
ref[0] = data1[0];
|
||||
@ -478,7 +475,7 @@ template<typename Scalar> void packetmath_notcomplex()
|
||||
for (int i=0; i<PacketSize; ++i)
|
||||
ref[0] = (std::max)(ref[0],data1[i]);
|
||||
VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max");
|
||||
|
||||
|
||||
for (int i=0; i<PacketSize; ++i)
|
||||
ref[i] = data1[0]+Scalar(i);
|
||||
internal::pstore(data2, internal::plset<Packet>(data1[0]));
|
||||
@ -490,12 +487,12 @@ template<typename Scalar,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar
|
||||
typedef internal::packet_traits<Scalar> PacketTraits;
|
||||
typedef typename PacketTraits::type Packet;
|
||||
const int PacketSize = PacketTraits::size;
|
||||
|
||||
|
||||
internal::conj_if<ConjLhs> cj0;
|
||||
internal::conj_if<ConjRhs> cj1;
|
||||
internal::conj_helper<Scalar,Scalar,ConjLhs,ConjRhs> cj;
|
||||
internal::conj_helper<Packet,Packet,ConjLhs,ConjRhs> pcj;
|
||||
|
||||
|
||||
for(int i=0;i<PacketSize;++i)
|
||||
{
|
||||
ref[i] = cj0(data1[i]) * cj1(data2[i]);
|
||||
@ -503,7 +500,7 @@ template<typename Scalar,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar
|
||||
}
|
||||
internal::pstore(pval,pcj.pmul(internal::pload<Packet>(data1),internal::pload<Packet>(data2)));
|
||||
VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmul");
|
||||
|
||||
|
||||
for(int i=0;i<PacketSize;++i)
|
||||
{
|
||||
Scalar tmp = ref[i];
|
||||
@ -531,12 +528,12 @@ template<typename Scalar> void packetmath_complex()
|
||||
data1[i] = internal::random<Scalar>() * Scalar(1e2);
|
||||
data2[i] = internal::random<Scalar>() * Scalar(1e2);
|
||||
}
|
||||
|
||||
|
||||
test_conj_helper<Scalar,false,false> (data1,data2,ref,pval);
|
||||
test_conj_helper<Scalar,false,true> (data1,data2,ref,pval);
|
||||
test_conj_helper<Scalar,true,false> (data1,data2,ref,pval);
|
||||
test_conj_helper<Scalar,true,true> (data1,data2,ref,pval);
|
||||
|
||||
|
||||
{
|
||||
for(int i=0;i<PacketSize;++i)
|
||||
ref[i] = Scalar(std::imag(data1[i]),std::real(data1[i]));
|
||||
@ -556,9 +553,9 @@ template<typename Scalar> void packetmath_scatter_gather()
|
||||
for (int i=0; i<PacketSize; ++i) {
|
||||
data1[i] = internal::random<Scalar>()/RealScalar(PacketSize);
|
||||
}
|
||||
|
||||
|
||||
int stride = internal::random<int>(1,20);
|
||||
|
||||
|
||||
EIGEN_ALIGN_MAX Scalar buffer[PacketSize*20];
|
||||
memset(buffer, 0, 20*sizeof(Packet));
|
||||
Packet packet = internal::pload<Packet>(data1);
|
||||
@ -594,7 +591,7 @@ void test_packetmath()
|
||||
CALL_SUBTEST_1( packetmath_notcomplex<float>() );
|
||||
CALL_SUBTEST_2( packetmath_notcomplex<double>() );
|
||||
CALL_SUBTEST_3( packetmath_notcomplex<int>() );
|
||||
|
||||
|
||||
CALL_SUBTEST_1( packetmath_real<float>() );
|
||||
CALL_SUBTEST_2( packetmath_real<double>() );
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user