mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
Fix a bug in the implementation of Carmack's fast sqrt algorithm in Eigen (enabled by EIGEN_FAST_MATH), which causes the vectorized parts of the computation to return -0.0 instead of NaN for negative arguments.
Benchmark speed in Giga-sqrts/s Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz ----------------------------------------- SSE AVX Fast=1 2.529G 4.380G Fast=0 1.944G 1.898G Fast=1 fixed 2.214G 3.739G This table illustrates the worst case in terms speed impact: It was measured by repeatedly computing the sqrt of an n=4096 float vector that fits in L1 cache. For large vectors the operation becomes memory bound and the differences between the different versions almost negligible.
This commit is contained in:
parent
6af5ac7e27
commit
3ed67cb0bb
@ -362,23 +362,17 @@ pexp<Packet4d>(const Packet4d& _x) {
|
||||
template <>
|
||||
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
||||
psqrt<Packet8f>(const Packet8f& _x) {
|
||||
_EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
|
||||
_EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
|
||||
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
|
||||
|
||||
Packet8f neg_half = pmul(_x, p8f_minus_half);
|
||||
|
||||
// select only the inverse sqrt of positive normal inputs (denormals are
|
||||
// flushed to zero and cause infs as well).
|
||||
Packet8f non_zero_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_GE_OQ);
|
||||
Packet8f x = _mm256_and_ps(non_zero_mask, _mm256_rsqrt_ps(_x));
|
||||
Packet8f half = pmul(_x, pset1<Packet8f>(.5f));
|
||||
Packet8f denormal_mask = _mm256_and_ps(
|
||||
_mm256_cmpge_ps(_x, _mm256_setzero_ps()),
|
||||
_mm256_cmplt_ps(_x, pset1<Packet8f>((std::numeric_limits<float>::min)())));
|
||||
|
||||
// Compute approximate reciprocal sqrt.
|
||||
Packet8f x = _mm256_rsqrt_ps(_x);
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), p8f_one_point_five));
|
||||
|
||||
// Multiply the original _x by it's reciprocal square root to extract the
|
||||
// square root.
|
||||
return pmul(_x, x);
|
||||
x = pmul(x, psub(pset1<Packet8f>(1.5f), pmul(half, pmul(x,x))));
|
||||
// Flush results for denormals to zero.
|
||||
return _mm256_andnot_ps(denormal_mask, pmul(_x,x));
|
||||
}
|
||||
#else
|
||||
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
|
@ -451,13 +451,16 @@ template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet4f psqrt<Packet4f>(const Packet4f& _x)
|
||||
{
|
||||
Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
|
||||
Packet4f denormal_mask = _mm_and_ps(
|
||||
_mm_cmpge_ps(_x, _mm_setzero_ps()),
|
||||
_mm_cmplt_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)())));
|
||||
|
||||
/* select only the inverse sqrt of non-zero inputs */
|
||||
Packet4f non_zero_mask = _mm_cmpge_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)()));
|
||||
Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));
|
||||
|
||||
// Compute approximate reciprocal sqrt.
|
||||
Packet4f x = _mm_rsqrt_ps(_x);
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
|
||||
return pmul(_x,x);
|
||||
// Flush results for denormals to zero.
|
||||
return _mm_andnot_ps(denormal_mask, pmul(_x,x));
|
||||
}
|
||||
|
||||
#else
|
||||
@ -491,7 +494,7 @@ Packet4f prsqrt<Packet4f>(const Packet4f& _x) {
|
||||
Packet4f neg_mask = _mm_cmplt_ps(_x, _mm_setzero_ps());
|
||||
Packet4f zero_mask = _mm_andnot_ps(neg_mask, le_zero_mask);
|
||||
Packet4f infs_and_nans = _mm_or_ps(_mm_and_ps(neg_mask, p4f_nan),
|
||||
_mm_and_ps(zero_mask, p4f_inf));
|
||||
_mm_and_ps(zero_mask, p4f_inf));
|
||||
|
||||
// Do a single step of Newton's iteration.
|
||||
x = pmul(x, pmadd(neg_half, pmul(x, x), p4f_one_point_five));
|
||||
|
@ -440,12 +440,9 @@ template<typename Scalar> void packetmath_real()
|
||||
data1[0] = Scalar(-1.0f);
|
||||
h.store(data2, internal::plog(h.load(data1)));
|
||||
VERIFY((numext::isnan)(data2[0]));
|
||||
#if !EIGEN_FAST_MATH
|
||||
h.store(data2, internal::psqrt(h.load(data1)));
|
||||
VERIFY((numext::isnan)(data2[0]));
|
||||
VERIFY((numext::isnan)(data2[1]));
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user