mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-14 17:11:50 +08:00
Fix real schur and polynomial solver.
For certain inputs, the real schur decomposition might get stuck in a cycle. Exceptional shifts are supposed to knock us out of that - but previously they were only ever applied at iteration 10 and 30, which doesn't help if the cycle starts after cycle 30. Modified to apply a shift every 16 iterations (for reference, LAPACK seems to do it every 6 iterations). Also added an assert in polynomial solver to verify that the schur decomposition was successful. Fixes #2633.
This commit is contained in:
parent
287c801780
commit
3ee06ec52f
@ -435,34 +435,33 @@ inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& ex
|
||||
shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
|
||||
shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
|
||||
|
||||
// Wilkinson's original ad hoc shift
|
||||
if (iter == 10)
|
||||
{
|
||||
exshift += shiftInfo.coeff(0);
|
||||
for (Index i = 0; i <= iu; ++i)
|
||||
m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
|
||||
Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
|
||||
shiftInfo.coeffRef(0) = Scalar(0.75) * s;
|
||||
shiftInfo.coeffRef(1) = Scalar(0.75) * s;
|
||||
shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
|
||||
}
|
||||
|
||||
// MATLAB's new ad hoc shift
|
||||
if (iter == 30)
|
||||
{
|
||||
Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
|
||||
s = s * s + shiftInfo.coeff(2);
|
||||
if (s > Scalar(0))
|
||||
{
|
||||
s = sqrt(s);
|
||||
if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
|
||||
s = -s;
|
||||
s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
|
||||
s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
|
||||
exshift += s;
|
||||
// Alternate exceptional shifting strategy every 16 iterations.
|
||||
if (iter % 16 == 0) {
|
||||
// Wilkinson's original ad hoc shift
|
||||
if (iter % 32 != 0) {
|
||||
exshift += shiftInfo.coeff(0);
|
||||
for (Index i = 0; i <= iu; ++i)
|
||||
m_matT.coeffRef(i,i) -= s;
|
||||
shiftInfo.setConstant(Scalar(0.964));
|
||||
m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
|
||||
Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
|
||||
shiftInfo.coeffRef(0) = Scalar(0.75) * s;
|
||||
shiftInfo.coeffRef(1) = Scalar(0.75) * s;
|
||||
shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
|
||||
} else {
|
||||
// MATLAB's new ad hoc shift
|
||||
Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
|
||||
s = s * s + shiftInfo.coeff(2);
|
||||
if (s > Scalar(0))
|
||||
{
|
||||
s = sqrt(s);
|
||||
if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
|
||||
s = -s;
|
||||
s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
|
||||
s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
|
||||
exshift += s;
|
||||
for (Index i = 0; i <= iu; ++i)
|
||||
m_matT.coeffRef(i,i) -= s;
|
||||
shiftInfo.setConstant(Scalar(0.964));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -98,6 +98,16 @@ template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTim
|
||||
}
|
||||
}
|
||||
|
||||
void test_bug2633() {
|
||||
Eigen::MatrixXd A(4, 4);
|
||||
A << 0, 0, 0, -2,
|
||||
1, 0, 0, -0,
|
||||
0, 1, 0, 2,
|
||||
0, 0, 2, -0;
|
||||
RealSchur<Eigen::MatrixXd> schur(A);
|
||||
VERIFY(schur.info() == Eigen::Success);
|
||||
}
|
||||
|
||||
EIGEN_DECLARE_TEST(schur_real)
|
||||
{
|
||||
CALL_SUBTEST_1(( schur<Matrix4f>() ));
|
||||
@ -107,4 +117,6 @@ EIGEN_DECLARE_TEST(schur_real)
|
||||
|
||||
// Test problem size constructors
|
||||
CALL_SUBTEST_5(RealSchur<MatrixXf>(10));
|
||||
|
||||
CALL_SUBTEST_6(( test_bug2633() ));
|
||||
}
|
||||
|
@ -354,6 +354,7 @@ class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
|
||||
internal::companion<Scalar,_Deg> companion( poly );
|
||||
companion.balance();
|
||||
m_eigenSolver.compute( companion.denseMatrix() );
|
||||
eigen_assert(m_eigenSolver.info() == Eigen::Success);
|
||||
m_roots = m_eigenSolver.eigenvalues();
|
||||
// cleanup noise in imaginary part of real roots:
|
||||
// if the imaginary part is rather small compared to the real part
|
||||
|
Loading…
x
Reference in New Issue
Block a user