mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-22 22:06:22 +08:00
merge both c methods lmdif/lmdif1 into one class
LevenbergMarquardtNumericalDiff with two methods.
This commit is contained in:
parent
a736378331
commit
3f1b81e129
@ -54,7 +54,6 @@ namespace Eigen {
|
||||
#include "src/NonLinear/lmdif.h"
|
||||
#include "src/NonLinear/hybrj.h"
|
||||
#include "src/NonLinear/lmstr1.h"
|
||||
#include "src/NonLinear/lmdif1.h"
|
||||
#include "src/NonLinear/chkder.h"
|
||||
|
||||
//@}
|
||||
|
@ -1,7 +1,74 @@
|
||||
|
||||
|
||||
template<typename FunctorType, typename Scalar>
|
||||
int ei_lmdif(
|
||||
const FunctorType &Functor,
|
||||
class LevenbergMarquardtNumericalDiff
|
||||
{
|
||||
public:
|
||||
LevenbergMarquardtNumericalDiff(const FunctorType &_functor)
|
||||
: functor(_functor) {}
|
||||
|
||||
int minimize(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
Matrix< Scalar, Dynamic, 1 > &fvec,
|
||||
const Scalar tol = ei_sqrt(epsilon<Scalar>())
|
||||
);
|
||||
|
||||
int minimize(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
Matrix< Scalar, Dynamic, 1 > &fvec,
|
||||
int &nfev,
|
||||
Matrix< Scalar, Dynamic, Dynamic > &fjac,
|
||||
VectorXi &ipvt,
|
||||
Matrix< Scalar, Dynamic, 1 > &qtf,
|
||||
Matrix< Scalar, Dynamic, 1 > &diag,
|
||||
int mode=1,
|
||||
Scalar factor = 100.,
|
||||
int maxfev = 400,
|
||||
Scalar ftol = ei_sqrt(epsilon<Scalar>()),
|
||||
Scalar xtol = ei_sqrt(epsilon<Scalar>()),
|
||||
Scalar gtol = Scalar(0.),
|
||||
Scalar epsfcn = Scalar(0.),
|
||||
int nprint=0
|
||||
);
|
||||
|
||||
private:
|
||||
const FunctorType &functor;
|
||||
};
|
||||
|
||||
|
||||
template<typename FunctorType, typename Scalar>
|
||||
int LevenbergMarquardtNumericalDiff<FunctorType,Scalar>::minimize(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
Matrix< Scalar, Dynamic, 1 > &fvec,
|
||||
Scalar tol
|
||||
)
|
||||
{
|
||||
const int n = x.size(), m=fvec.size();
|
||||
int info, nfev=0;
|
||||
Matrix< Scalar, Dynamic, Dynamic > fjac(m, n);
|
||||
Matrix< Scalar, Dynamic, 1> diag, qtf;
|
||||
VectorXi ipvt;
|
||||
|
||||
/* check the input parameters for errors. */
|
||||
if (n <= 0 || m < n || tol < 0.) {
|
||||
printf("ei_lmder1 bad args : m,n,tol,...");
|
||||
return 0;
|
||||
}
|
||||
|
||||
info = minimize(
|
||||
x, fvec,
|
||||
nfev,
|
||||
fjac, ipvt, qtf, diag,
|
||||
1,
|
||||
100.,
|
||||
(n+1)*200,
|
||||
tol, tol, Scalar(0.), Scalar(0.)
|
||||
);
|
||||
return (info==8)?4:info;
|
||||
}
|
||||
|
||||
template<typename FunctorType, typename Scalar>
|
||||
int LevenbergMarquardtNumericalDiff<FunctorType,Scalar>::minimize(
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
Matrix< Scalar, Dynamic, 1 > &fvec,
|
||||
int &nfev,
|
||||
@ -9,14 +76,14 @@ int ei_lmdif(
|
||||
VectorXi &ipvt,
|
||||
Matrix< Scalar, Dynamic, 1 > &qtf,
|
||||
Matrix< Scalar, Dynamic, 1 > &diag,
|
||||
int mode=1,
|
||||
Scalar factor = 100.,
|
||||
int maxfev = 400,
|
||||
Scalar ftol = ei_sqrt(epsilon<Scalar>()),
|
||||
Scalar xtol = ei_sqrt(epsilon<Scalar>()),
|
||||
Scalar gtol = Scalar(0.),
|
||||
Scalar epsfcn = Scalar(0.),
|
||||
int nprint=0
|
||||
int mode,
|
||||
Scalar factor,
|
||||
int maxfev,
|
||||
Scalar ftol,
|
||||
Scalar xtol,
|
||||
Scalar gtol,
|
||||
Scalar epsfcn,
|
||||
int nprint
|
||||
)
|
||||
{
|
||||
const int m = fvec.size(), n = x.size();
|
||||
@ -55,7 +122,7 @@ int ei_lmdif(
|
||||
/* evaluate the function at the starting point */
|
||||
/* and calculate its norm. */
|
||||
|
||||
iflag = Functor.f(x, fvec);
|
||||
iflag = functor.f(x, fvec);
|
||||
nfev = 1;
|
||||
if (iflag < 0)
|
||||
goto algo_end;
|
||||
@ -72,17 +139,17 @@ int ei_lmdif(
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
|
||||
iflag = ei_fdjac2(Functor, x, fvec, fjac, epsfcn);
|
||||
iflag = ei_fdjac2(functor, x, fvec, fjac, epsfcn);
|
||||
nfev += n;
|
||||
if (iflag < 0)
|
||||
break;
|
||||
|
||||
/* if requested, call Functor.f to enable printing of iterates. */
|
||||
/* if requested, call functor.f to enable printing of iterates. */
|
||||
|
||||
if (nprint > 0) {
|
||||
iflag = 0;
|
||||
if ((iter - 1) % nprint == 0)
|
||||
iflag = Functor.debug(x, fvec);
|
||||
iflag = functor.debug(x, fvec);
|
||||
if (iflag < 0)
|
||||
break;
|
||||
}
|
||||
@ -178,7 +245,7 @@ int ei_lmdif(
|
||||
|
||||
/* evaluate the function at x + p and calculate its norm. */
|
||||
|
||||
iflag = Functor.f(wa2, wa4);
|
||||
iflag = functor.f(wa2, wa4);
|
||||
++nfev;
|
||||
if (iflag < 0)
|
||||
goto algo_end;
|
||||
@ -275,7 +342,7 @@ algo_end:
|
||||
if (iflag < 0)
|
||||
info = iflag;
|
||||
if (nprint > 0)
|
||||
iflag = Functor.debug(x, fvec);
|
||||
iflag = functor.debug(x, fvec);
|
||||
return info;
|
||||
}
|
||||
|
||||
|
@ -1,34 +0,0 @@
|
||||
|
||||
template<typename FunctorType, typename Scalar>
|
||||
int ei_lmdif1(
|
||||
const FunctorType &Functor,
|
||||
Matrix< Scalar, Dynamic, 1 > &x,
|
||||
Matrix< Scalar, Dynamic, 1 > &fvec,
|
||||
Scalar tol = ei_sqrt(epsilon<Scalar>())
|
||||
)
|
||||
{
|
||||
const int n = x.size(), m=fvec.size();
|
||||
int info, nfev=0;
|
||||
Matrix< Scalar, Dynamic, Dynamic > fjac(m, n);
|
||||
Matrix< Scalar, Dynamic, 1> diag, qtf;
|
||||
VectorXi ipvt;
|
||||
|
||||
/* check the input parameters for errors. */
|
||||
if (n <= 0 || m < n || tol < 0.) {
|
||||
printf("ei_lmder1 bad args : m,n,tol,...");
|
||||
return 0;
|
||||
}
|
||||
|
||||
info = ei_lmdif(
|
||||
Functor,
|
||||
x, fvec,
|
||||
nfev,
|
||||
fjac, ipvt, qtf, diag,
|
||||
1,
|
||||
100.,
|
||||
(n+1)*200,
|
||||
tol, tol, Scalar(0.), Scalar(0.)
|
||||
);
|
||||
return (info==8)?4:info;
|
||||
}
|
||||
|
@ -541,7 +541,9 @@ void testLmdif1()
|
||||
x.setConstant(n, 1.);
|
||||
|
||||
// do the computation
|
||||
info = ei_lmdif1(lmdif_functor(), x, fvec);
|
||||
lmdif_functor functor;
|
||||
LevenbergMarquardtNumericalDiff<lmdif_functor,double> lm(functor);
|
||||
info = lm.minimize(x, fvec);
|
||||
|
||||
// check return value
|
||||
VERIFY( 1 == info);
|
||||
@ -569,7 +571,9 @@ void testLmdif()
|
||||
x.setConstant(n, 1.);
|
||||
|
||||
// do the computation
|
||||
info = ei_lmdif(lmdif_functor(), x, fvec, nfev, fjac, ipvt, qtf, diag);
|
||||
lmdif_functor functor;
|
||||
LevenbergMarquardtNumericalDiff<lmdif_functor,double> lm(functor);
|
||||
info = lm.minimize(x, fvec, nfev, fjac, ipvt, qtf, diag);
|
||||
|
||||
// check return values
|
||||
VERIFY( 1 == info);
|
||||
|
Loading…
x
Reference in New Issue
Block a user