PR 571: Implements an accurate argument reduction algorithm for huge inputs of sin/cos and call it instead of falling back to std::sin/std::cos.

This makes both the small and huge argument cases faster because:
- for small inputs this removes the last pselect
- for large inputs only the reduction part follows a scalar path,
the rest use the same SIMD path as the small-argument case.
This commit is contained in:
Gael Guennebaud 2019-01-14 13:54:01 +01:00
parent f566724023
commit 4356a55a61
2 changed files with 119 additions and 33 deletions

View File

@ -3,7 +3,7 @@
//
// Copyright (C) 2007 Julien Pommier
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
// Copyright (C) 2009-2018 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@ -253,15 +253,68 @@ Packet pexp_double(const Packet _x)
return pmax(pldexp(x,fx), _x);
}
/* The code is the rewriting of the cephes sinf/cosf functions.
Precision is excellent as long as x < 8192 (I did not bother to
take into account the special handling they have for greater values
-- it does not return garbage for arguments over 8192, though, but
the extra precision is missing).
// The following code is inspired by the following stack-overflow answer:
// https://stackoverflow.com/questions/30463616/payne-hanek-algorithm-implementation-in-c/30465751#30465751
// It has been largely optimized:
// - By-pass calls to frexp.
// - Aligned loads of required 96 bits of 2/pi. This is accomplished by
// (1) balancing the mantissa and exponent to the required bits of 2/pi are
// aligned on 8-bits, and (2) replicating the storage of the bits of 2/pi.
// - Avoid a branch in rounding and extraction of the remaining fractional part.
// Overall, I measured a speed up higher than x2 on x86-64.
inline float trig_reduce_huge (float xf, int *quadrant)
{
using Eigen::numext::int32_t;
using Eigen::numext::uint32_t;
using Eigen::numext::int64_t;
using Eigen::numext::uint64_t;
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
surprising but correct result.
*/
const double pio2_62 = 3.4061215800865545e-19; // pi/2 * 2^-62
const uint64_t zero_dot_five = uint64_t(1) << 61; // 0.5 in 2.62-bit fixed-point foramt
// 192 bits of 2/pi for Payne-Hanek reduction
// Bits are introduced by packet of 8 to enable aligned reads.
static const uint32_t two_over_pi [] =
{
0x00000028, 0x000028be, 0x0028be60, 0x28be60db,
0xbe60db93, 0x60db9391, 0xdb939105, 0x9391054a,
0x91054a7f, 0x054a7f09, 0x4a7f09d5, 0x7f09d5f4,
0x09d5f47d, 0xd5f47d4d, 0xf47d4d37, 0x7d4d3770,
0x4d377036, 0x377036d8, 0x7036d8a5, 0x36d8a566,
0xd8a5664f, 0xa5664f10, 0x664f10e4, 0x4f10e410,
0x10e41000, 0xe4100000
};
uint32_t xi = numext::as_uint(xf);
// Below, -118 = -126 + 8.
// -126 is to get the exponent,
// +8 is to enable alignment of 2/pi's bits on 8 bits.
// This is possible because the fractional part of x as only 24 meaningful bits.
uint32_t e = (xi >> 23) - 118;
// Extract the mantissa and shift it to align it wrt the exponent
xi = ((xi & 0x007fffffu)| 0x00800000u) << (e & 0x7);
uint32_t i = e >> 3;
uint32_t twoopi_1 = two_over_pi[i-1];
uint32_t twoopi_2 = two_over_pi[i+3];
uint32_t twoopi_3 = two_over_pi[i+7];
// Compute x * 2/pi in 2.62-bit fixed-point format.
uint64_t p;
p = uint64_t(xi) * twoopi_3;
p = uint64_t(xi) * twoopi_2 + (p >> 32);
p = (uint64_t(xi * twoopi_1) << 32) + p;
// Round to nearest: add 0.5 and extract integral part.
uint64_t q = (p + zero_dot_five) >> 62;
*quadrant = int(q);
// Now it remains to compute "r = x - q*pi/2" with high accuracy,
// since we have p=x/(pi/2) with high accuracy, we can more efficiently compute r as:
// r = (p-q)*pi/2,
// where the product can be be carried out with sufficient accuracy using double precision.
p -= q<<62;
return float(double(int64_t(p)) * pio2_62);
}
template<bool ComputeSine,typename Packet>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
@ -285,17 +338,6 @@ Packet psincos_float(const Packet& _x)
PacketI y_int = preinterpret<PacketI>(y_round); // last 23 digits represent integer (if abs(x)<2^24)
y = psub(y_round, cst_rounding_magic); // nearest integer to x*4/pi
// Compute the sign to apply to the polynomial.
// sin: sign = second_bit(y_int) xor signbit(_x)
// cos: sign = second_bit(y_int+1)
Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(pshiftleft<30>(y_int)))
: preinterpret<Packet>(pshiftleft<30>(padd(y_int,csti_1)));
sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit
// Get the polynomial selection mask from the second bit of y_int
// We'll calculate both (sin and cos) polynomials and then select from the two.
Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int, csti_1), pzero(y_int)));
// Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4
// using "Extended precision modular arithmetic"
#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD)
@ -332,25 +374,36 @@ Packet psincos_float(const Packet& _x)
// The coefficients are: 0xbfc90f80, 0xb7354480, 0x2e74b9ee
#endif
// We use huge_vals as a temporary for abs(_x) to ensure huge_vals
// is fully initialized for the last pselect(). (prevent compiler warning)
Packet huge_vals = pabs(_x);
Packet huge_mask = pcmp_le(pset1<Packet>(huge_th),huge_vals);
if(predux_any(huge_mask))
if(predux_any(pcmp_le(pset1<Packet>(huge_th),pabs(_x))))
{
const int PacketSize = unpacket_traits<Packet>::size;
EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float vals[PacketSize];
pstoreu(vals, _x);
for(int k=0; k<PacketSize;++k) {
EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float x_cpy[PacketSize];
EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) int y_int2[PacketSize];
pstoreu(vals, pabs(_x));
pstoreu(x_cpy, x);
pstoreu(y_int2, y_int);
for(int k=0; k<PacketSize;++k)
{
float val = vals[k];
if(numext::abs(val)>=huge_th) {
vals[k] = ComputeSine ? std::sin(val) : std::cos(val);
}
if(val>=huge_th && (numext::isfinite)(val))
x_cpy[k] = trig_reduce_huge(val,&y_int2[k]);
}
huge_vals = ploadu<Packet>(vals);
x = ploadu<Packet>(x_cpy);
y_int = ploadu<PacketI>(y_int2);
}
// Compute the sign to apply to the polynomial.
// sin: sign = second_bit(y_int) xor signbit(_x)
// cos: sign = second_bit(y_int+1)
Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(pshiftleft<30>(y_int)))
: preinterpret<Packet>(pshiftleft<30>(padd(y_int,csti_1)));
sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit
// Get the polynomial selection mask from the second bit of y_int
// We'll calculate both (sin and cos) polynomials and then select from the two.
Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int, csti_1), pzero(y_int)));
Packet x2 = pmul(x,x);
// Evaluate the cos(x) polynomial. (-Pi/4 <= x <= Pi/4)
@ -379,7 +432,7 @@ Packet psincos_float(const Packet& _x)
: pselect(poly_mask,y1,y2);
// Update the sign and filter huge inputs
return pselect(huge_mask, huge_vals, pxor(y, sign_bit));
return pxor(y, sign_bit);
}
template<typename Packet>

View File

@ -636,8 +636,41 @@ template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
bool not_equal_strict(const double& x,const double& y) { return std::not_equal_to<double>()(x,y); }
#endif
/** \internal extract the bits of the float \a x */
inline unsigned int as_uint(float x)
{
unsigned int ret;
std::memcpy(&ret, &x, sizeof(float));
return ret;
}
} // end namespace numext
} // end namespace Eigen
// Define portable (u)int{32,64} types
#if EIGEN_HAS_CXX11
#include <cstdint>
namespace Eigen {
namespace numext {
typedef std::uint32_t uint32_t;
typedef std::int32_t int32_t;
typedef std::uint64_t uint64_t;
typedef std::int64_t int64_t;
}
}
#else
// Without c++11, all compilers able to compile Eigen also
// provides the C99 stdint.h header file.
#include <stdint.h>
namespace Eigen {
namespace numext {
typedef ::uint32_t uint32_t;
typedef ::int32_t int32_t;
typedef ::uint64_t uint64_t;
typedef ::int64_t int64_t;
}
}
#endif
#endif // EIGEN_META_H