move Parameters as a class member, simplify calling sequence. Convenience

methods from minpack ( "*1()" ) get their original name back : they are
only useful when porting, anyway. Still, i prefer to keep them.
This commit is contained in:
Thomas Capricelli 2009-08-26 14:23:05 +02:00
parent c1be96967e
commit 458947af5e
3 changed files with 106 additions and 166 deletions

View File

@ -33,48 +33,44 @@ public:
Scalar epsfcn;
};
Status solve(
Status hybrj1(
Matrix< Scalar, Dynamic, 1 > &x,
const Scalar tol = ei_sqrt(epsilon<Scalar>())
);
Status solveInit(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
Status solveOneStep(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
Status solve(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
Status solveNumericalDiff(
Status hybrd1(
Matrix< Scalar, Dynamic, 1 > &x,
const Scalar tol = ei_sqrt(epsilon<Scalar>())
);
Status solveNumericalDiffInit(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
Status solveNumericalDiffOneStep(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
Status solveNumericalDiff(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
void resetParameters(void) { parameters = Parameters(); }
Parameters parameters;
Matrix< Scalar, Dynamic, 1 > fvec;
Matrix< Scalar, Dynamic, Dynamic > fjac;
Matrix< Scalar, Dynamic, 1 > R;
@ -105,24 +101,23 @@ private:
template<typename FunctorType, typename Scalar>
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
HybridNonLinearSolver<FunctorType,Scalar>::solve(
HybridNonLinearSolver<FunctorType,Scalar>::hybrj1(
Matrix< Scalar, Dynamic, 1 > &x,
const Scalar tol
)
{
n = x.size();
Parameters parameters;
/* check the input parameters for errors. */
if (n <= 0 || tol < 0.)
return ImproperInputParameters;
resetParameters();
parameters.maxfev = 100*(n+1);
parameters.xtol = tol;
diag.setConstant(n, 1.);
return solve(
x,
parameters,
2
);
}
@ -131,7 +126,6 @@ template<typename FunctorType, typename Scalar>
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveInit(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
@ -182,7 +176,6 @@ template<typename FunctorType, typename Scalar>
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
@ -404,13 +397,12 @@ template<typename FunctorType, typename Scalar>
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
HybridNonLinearSolver<FunctorType,Scalar>::solve(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
Status status = solveInit(x, parameters, mode);
Status status = solveInit(x, mode);
while (status==Running)
status = solveOneStep(x, parameters, mode);
status = solveOneStep(x, mode);
return status;
}
@ -418,25 +410,24 @@ HybridNonLinearSolver<FunctorType,Scalar>::solve(
template<typename FunctorType, typename Scalar>
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(
HybridNonLinearSolver<FunctorType,Scalar>::hybrd1(
Matrix< Scalar, Dynamic, 1 > &x,
const Scalar tol
)
{
n = x.size();
Parameters parameters;
/* check the input parameters for errors. */
if (n <= 0 || tol < 0.)
return ImproperInputParameters;
resetParameters();
parameters.maxfev = 200*(n+1);
parameters.xtol = tol;
diag.setConstant(n, 1.);
return solveNumericalDiff(
x,
parameters,
2
);
}
@ -445,16 +436,13 @@ template<typename FunctorType, typename Scalar>
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
n = x.size();
int nsub = parameters.nb_of_subdiagonals;
int nsup = parameters.nb_of_superdiagonals;
if (nsub<0) nsub= n-1;
if (nsup<0) nsup= n-1;
if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
qtf.resize(n);
@ -472,7 +460,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(
/* check the input parameters for errors. */
if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || nsub< 0 || nsup< 0 || parameters.factor <= 0. )
if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.nb_of_subdiagonals< 0 || parameters.nb_of_superdiagonals< 0 || parameters.factor <= 0. )
return ImproperInputParameters;
if (mode == 2)
for (int j = 0; j < n; ++j)
@ -502,22 +490,19 @@ template<typename FunctorType, typename Scalar>
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
int i, j, l, iwa[1];
jeval = true;
int nsub = parameters.nb_of_subdiagonals;
int nsup = parameters.nb_of_superdiagonals;
if (nsub<0) nsub= n-1;
if (nsup<0) nsup= n-1;
if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
/* calculate the jacobian matrix. */
if (ei_fdjac1(functor, x, fvec, fjac, nsub, nsup, parameters.epsfcn) <0)
if (ei_fdjac1(functor, x, fvec, fjac, parameters.nb_of_subdiagonals, parameters.nb_of_superdiagonals, parameters.epsfcn) <0)
return UserAksed;
nfev += std::min(nsub+ nsup+ 1, n);
nfev += std::min(parameters.nb_of_subdiagonals+parameters.nb_of_superdiagonals+ 1, n);
/* compute the qr factorization of the jacobian. */
@ -728,13 +713,12 @@ template<typename FunctorType, typename Scalar>
typename HybridNonLinearSolver<FunctorType,Scalar>::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
Status status = solveNumericalDiffInit(x, parameters, mode);
Status status = solveNumericalDiffInit(x, mode);
while (status==Running)
status = solveNumericalDiffOneStep(x, parameters, mode);
status = solveNumericalDiffOneStep(x, mode);
return status;
}

View File

@ -36,69 +36,62 @@ public:
Scalar epsfcn;
};
Status minimize(
Status lmder1(
Matrix< Scalar, Dynamic, 1 > &x,
const Scalar tol = ei_sqrt(epsilon<Scalar>())
);
Status minimize(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
Status minimizeInit(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
Status minimizeOneStep(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
Status minimizeNumericalDiff(
Status lmdif1(
Matrix< Scalar, Dynamic, 1 > &x,
const Scalar tol = ei_sqrt(epsilon<Scalar>())
);
Status minimizeNumericalDiff(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
Status minimizeNumericalDiffInit(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
Status minimizeNumericalDiffOneStep(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
Status minimizeOptimumStorage(
Status lmstr1(
Matrix< Scalar, Dynamic, 1 > &x,
const Scalar tol = ei_sqrt(epsilon<Scalar>())
);
Status minimizeOptimumStorage(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
Status minimizeOptimumStorageInit(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
Status minimizeOptimumStorageOneStep(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode=1
);
void resetParameters(void) { parameters = Parameters(); }
Parameters parameters;
Matrix< Scalar, Dynamic, 1 > fvec;
Matrix< Scalar, Dynamic, Dynamic > fjac;
VectorXi ipvt;
@ -123,27 +116,24 @@ private:
template<typename FunctorType, typename Scalar>
typename LevenbergMarquardt<FunctorType,Scalar>::Status
LevenbergMarquardt<FunctorType,Scalar>::minimize(
LevenbergMarquardt<FunctorType,Scalar>::lmder1(
Matrix< Scalar, Dynamic, 1 > &x,
const Scalar tol
)
{
n = x.size();
m = functor.nbOfFunctions();
Parameters parameters;
/* check the input parameters for errors. */
if (n <= 0 || m < n || tol < 0.)
return ImproperInputParameters;
resetParameters();
parameters.ftol = tol;
parameters.xtol = tol;
parameters.maxfev = 100*(n+1);
return minimize(
x,
parameters
);
return minimize(x);
}
@ -151,13 +141,12 @@ template<typename FunctorType, typename Scalar>
typename LevenbergMarquardt<FunctorType,Scalar>::Status
LevenbergMarquardt<FunctorType,Scalar>::minimize(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
Status status = minimizeInit(x, parameters, mode);
Status status = minimizeInit(x, mode);
while (status==Running)
status = minimizeOneStep(x, parameters, mode);
status = minimizeOneStep(x, mode);
return status;
}
@ -165,7 +154,6 @@ template<typename FunctorType, typename Scalar>
typename LevenbergMarquardt<FunctorType,Scalar>::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
@ -216,7 +204,6 @@ template<typename FunctorType, typename Scalar>
typename LevenbergMarquardt<FunctorType,Scalar>::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
@ -408,34 +395,30 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
template<typename FunctorType, typename Scalar>
typename LevenbergMarquardt<FunctorType,Scalar>::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeNumericalDiff(
LevenbergMarquardt<FunctorType,Scalar>::lmdif1(
Matrix< Scalar, Dynamic, 1 > &x,
const Scalar tol
)
{
n = x.size();
m = functor.nbOfFunctions();
Parameters parameters;
/* check the input parameters for errors. */
if (n <= 0 || m < n || tol < 0.)
return ImproperInputParameters;
resetParameters();
parameters.ftol = tol;
parameters.xtol = tol;
parameters.maxfev = 200*(n+1);
return minimizeNumericalDiff(
x,
parameters
);
return minimizeNumericalDiff(x);
}
template<typename FunctorType, typename Scalar>
typename LevenbergMarquardt<FunctorType,Scalar>::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeNumericalDiffInit(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
@ -484,7 +467,6 @@ template<typename FunctorType, typename Scalar>
typename LevenbergMarquardt<FunctorType,Scalar>::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeNumericalDiffOneStep(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
@ -679,20 +661,19 @@ template<typename FunctorType, typename Scalar>
typename LevenbergMarquardt<FunctorType,Scalar>::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeNumericalDiff(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
Status status = minimizeNumericalDiffInit(x, parameters, mode);
Status status = minimizeNumericalDiffInit(x, mode);
while (status==Running)
status = minimizeNumericalDiffOneStep(x, parameters, mode);
status = minimizeNumericalDiffOneStep(x, mode);
return status;
}
template<typename FunctorType, typename Scalar>
typename LevenbergMarquardt<FunctorType,Scalar>::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(
LevenbergMarquardt<FunctorType,Scalar>::lmstr1(
Matrix< Scalar, Dynamic, 1 > &x,
const Scalar tol
)
@ -701,27 +682,23 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(
m = functor.nbOfFunctions();
Matrix< Scalar, Dynamic, Dynamic > fjac(m, n);
VectorXi ipvt;
Parameters parameters;
/* check the input parameters for errors. */
if (n <= 0 || m < n || tol < 0.)
return ImproperInputParameters;
resetParameters();
parameters.ftol = tol;
parameters.xtol = tol;
parameters.maxfev = 100*(n+1);
return minimizeOptimumStorage(
x,
parameters
);
return minimizeOptimumStorage(x);
}
template<typename FunctorType, typename Scalar>
typename LevenbergMarquardt<FunctorType,Scalar>::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
@ -773,7 +750,6 @@ template<typename FunctorType, typename Scalar>
typename LevenbergMarquardt<FunctorType,Scalar>::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
@ -986,13 +962,12 @@ template<typename FunctorType, typename Scalar>
typename LevenbergMarquardt<FunctorType,Scalar>::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(
Matrix< Scalar, Dynamic, 1 > &x,
const Parameters &parameters,
const int mode
)
{
Status status = minimizeOptimumStorageInit(x, parameters, mode);
Status status = minimizeOptimumStorageInit(x, mode);
while (status==Running)
status = minimizeOptimumStorageOneStep(x, parameters, mode);
status = minimizeOptimumStorageOneStep(x, mode);
return status;
}

View File

@ -154,7 +154,7 @@ void testLmder1()
// do the computation
lmder_functor functor;
LevenbergMarquardt<lmder_functor> lm(functor);
info = lm.minimize(x);
info = lm.lmder1(x);
// check return value
VERIFY( 1 == info);
@ -181,8 +181,7 @@ void testLmder()
// do the computation
lmder_functor functor;
LevenbergMarquardt<lmder_functor> lm(functor);
LevenbergMarquardt<lmder_functor>::Parameters parameters;
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return values
VERIFY( 1 == info);
@ -270,7 +269,7 @@ void testHybrj1()
// do the computation
hybrj_functor functor;
HybridNonLinearSolver<hybrj_functor> solver(functor);
info = solver.solve(x);
info = solver.hybrj1(x);
// check return value
VERIFY( 1 == info);
@ -302,8 +301,7 @@ void testHybrj()
hybrj_functor functor;
HybridNonLinearSolver<hybrj_functor> solver(functor);
solver.diag.setConstant(n, 1.);
HybridNonLinearSolver<hybrj_functor>::Parameters parameters;
info = solver.solve(x, parameters, 2);
info = solver.solve(x, 2);
// check return value
VERIFY( 1 == info);
@ -356,7 +354,7 @@ void testHybrd1()
// do the computation
hybrd_functor functor;
HybridNonLinearSolver<hybrd_functor> solver(functor);
info = solver.solveNumericalDiff(x);
info = solver.hybrd1(x);
// check return value
VERIFY( 1 == info);
@ -382,11 +380,10 @@ void testHybrd()
// do the computation
hybrd_functor functor;
HybridNonLinearSolver<hybrd_functor> solver(functor);
HybridNonLinearSolver<hybrd_functor>::Parameters parameters;
parameters.nb_of_subdiagonals = 1;
parameters.nb_of_superdiagonals = 1;
solver.parameters.nb_of_subdiagonals = 1;
solver.parameters.nb_of_superdiagonals = 1;
solver.diag.setConstant(n, 1.);
info = solver.solveNumericalDiff(x, parameters, 2);
info = solver.solveNumericalDiff(x, 2);
// check return value
VERIFY( 1 == info);
@ -457,7 +454,7 @@ void testLmstr1()
// do the computation
lmstr_functor functor;
LevenbergMarquardt<lmstr_functor> lm(functor);
info = lm.minimizeOptimumStorage(x);
info = lm.lmstr1(x);
// check return value
VERIFY( 1 == info);
@ -484,8 +481,7 @@ void testLmstr()
// do the computation
lmstr_functor functor;
LevenbergMarquardt<lmstr_functor> lm(functor);
LevenbergMarquardt<lmstr_functor>::Parameters parameters;
info = lm.minimizeOptimumStorage(x, parameters);
info = lm.minimizeOptimumStorage(x);
// check return values
VERIFY( 1 == info);
@ -543,7 +539,7 @@ void testLmdif1()
// do the computation
lmdif_functor functor;
LevenbergMarquardt<lmdif_functor> lm(functor);
info = lm.minimizeNumericalDiff(x);
info = lm.lmdif1(x);
// check return value
VERIFY( 1 == info);
@ -571,8 +567,7 @@ void testLmdif()
// do the computation
lmdif_functor functor;
LevenbergMarquardt<lmdif_functor> lm(functor);
LevenbergMarquardt<lmdif_functor>::Parameters parameters;
info = lm.minimizeNumericalDiff(x, parameters);
info = lm.minimizeNumericalDiff(x);
// check return values
VERIFY( 1 == info);
@ -657,8 +652,7 @@ void testNistChwirut2(void)
// do the computation
chwirut2_functor functor;
LevenbergMarquardt<chwirut2_functor> lm(functor);
LevenbergMarquardt<chwirut2_functor>::Parameters parameters;
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -676,10 +670,10 @@ void testNistChwirut2(void)
*/
x<< 0.15, 0.008, 0.010;
// do the computation
parameters = LevenbergMarquardt<chwirut2_functor>::Parameters(); // get default back
parameters.ftol = 1.E6*epsilon<double>();
parameters.xtol = 1.E6*epsilon<double>();
info = lm.minimize(x, parameters);
lm.resetParameters();
lm.parameters.ftol = 1.E6*epsilon<double>();
lm.parameters.xtol = 1.E6*epsilon<double>();
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -738,8 +732,7 @@ void testNistMisra1a(void)
// do the computation
misra1a_functor functor;
LevenbergMarquardt<misra1a_functor> lm(functor);
LevenbergMarquardt<misra1a_functor>::Parameters parameters;
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -756,7 +749,7 @@ void testNistMisra1a(void)
*/
x<< 250., 0.0005;
// do the computation
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -825,8 +818,7 @@ void testNistHahn1(void)
// do the computation
hahn1_functor functor;
LevenbergMarquardt<hahn1_functor> lm(functor);
LevenbergMarquardt<hahn1_functor>::Parameters parameters;
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -848,7 +840,7 @@ void testNistHahn1(void)
*/
x<< .1, -.1, .005, -.000001, -.005, .0001, -.0000001;
// do the computation
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -912,8 +904,7 @@ void testNistMisra1d(void)
// do the computation
misra1d_functor functor;
LevenbergMarquardt<misra1d_functor> lm(functor);
LevenbergMarquardt<misra1d_functor>::Parameters parameters;
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 3 == info);
@ -930,7 +921,7 @@ void testNistMisra1d(void)
*/
x<< 450., 0.0003;
// do the computation
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -991,8 +982,7 @@ void testNistLanczos1(void)
// do the computation
lanczos1_functor functor;
LevenbergMarquardt<lanczos1_functor> lm(functor);
LevenbergMarquardt<lanczos1_functor>::Parameters parameters;
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 2 == info);
@ -1013,7 +1003,7 @@ void testNistLanczos1(void)
*/
x<< 0.5, 0.7, 3.6, 4.2, 4., 6.3;
// do the computation
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 2 == info);
@ -1078,8 +1068,7 @@ void testNistRat42(void)
// do the computation
rat42_functor functor;
LevenbergMarquardt<rat42_functor> lm(functor);
LevenbergMarquardt<rat42_functor>::Parameters parameters;
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1097,7 +1086,7 @@ void testNistRat42(void)
*/
x<< 75., 2.5, 0.07;
// do the computation
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1157,8 +1146,7 @@ void testNistMGH10(void)
// do the computation
MGH10_functor functor;
LevenbergMarquardt<MGH10_functor> lm(functor);
LevenbergMarquardt<MGH10_functor>::Parameters parameters;
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 2 == info);
@ -1176,7 +1164,7 @@ void testNistMGH10(void)
*/
x<< 0.02, 4000., 250.;
// do the computation
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 2 == info);
@ -1234,11 +1222,10 @@ void testNistBoxBOD(void)
// do the computation
BoxBOD_functor functor;
LevenbergMarquardt<BoxBOD_functor> lm(functor);
LevenbergMarquardt<BoxBOD_functor>::Parameters parameters;
parameters.ftol = 1.E6*epsilon<double>();
parameters.xtol = 1.E6*epsilon<double>();
parameters.factor = 10.;
info = lm.minimize(x, parameters);
lm.parameters.ftol = 1.E6*epsilon<double>();
lm.parameters.xtol = 1.E6*epsilon<double>();
lm.parameters.factor = 10.;
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1255,10 +1242,10 @@ void testNistBoxBOD(void)
*/
x<< 100., 0.75;
// do the computation
parameters = LevenbergMarquardt<BoxBOD_functor>::Parameters(); // get default back
parameters.ftol = epsilon<double>();
parameters.xtol = epsilon<double>();
info = lm.minimize(x, parameters);
lm.resetParameters();
lm.parameters.ftol = epsilon<double>();
lm.parameters.xtol = epsilon<double>();
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1317,11 +1304,10 @@ void testNistMGH17(void)
// do the computation
MGH17_functor functor;
LevenbergMarquardt<MGH17_functor> lm(functor);
LevenbergMarquardt<MGH17_functor>::Parameters parameters;
parameters.ftol = epsilon<double>();
parameters.xtol = epsilon<double>();
parameters.maxfev = 1000;
info = lm.minimize(x, parameters);
lm.parameters.ftol = epsilon<double>();
lm.parameters.xtol = epsilon<double>();
lm.parameters.maxfev = 1000;
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1341,8 +1327,8 @@ void testNistMGH17(void)
*/
x<< 0.5 ,1.5 ,-1 ,0.01 ,0.02;
// do the computation
parameters = LevenbergMarquardt<MGH17_functor>::Parameters(); // get default back
info = lm.minimize(x, parameters);
lm.resetParameters();
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1407,9 +1393,8 @@ void testNistMGH09(void)
// do the computation
MGH09_functor functor;
LevenbergMarquardt<MGH09_functor> lm(functor);
LevenbergMarquardt<MGH09_functor>::Parameters parameters;
parameters.maxfev = 1000;
info = lm.minimize(x, parameters);
lm.parameters.maxfev = 1000;
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1428,8 +1413,8 @@ void testNistMGH09(void)
*/
x<< 0.25, 0.39, 0.415, 0.39;
// do the computation
parameters = LevenbergMarquardt<MGH09_functor>::Parameters();
info = lm.minimize(x, parameters);
lm.resetParameters();
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1491,9 +1476,8 @@ void testNistBennett5(void)
// do the computation
Bennett5_functor functor;
LevenbergMarquardt<Bennett5_functor> lm(functor);
LevenbergMarquardt<Bennett5_functor>::Parameters parameters;
parameters.maxfev = 1000;
info = lm.minimize(x, parameters);
lm.parameters.maxfev = 1000;
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1510,8 +1494,8 @@ void testNistBennett5(void)
*/
x<< -1500., 45., 0.85;
// do the computation
parameters = LevenbergMarquardt<Bennett5_functor>::Parameters();
info = lm.minimize(x, parameters);
lm.resetParameters();
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1579,10 +1563,9 @@ void testNistThurber(void)
// do the computation
thurber_functor functor;
LevenbergMarquardt<thurber_functor> lm(functor);
LevenbergMarquardt<thurber_functor>::Parameters parameters;
parameters.ftol = 1.E4*epsilon<double>();
parameters.xtol = 1.E4*epsilon<double>();
info = lm.minimize(x, parameters);
lm.parameters.ftol = 1.E4*epsilon<double>();
lm.parameters.xtol = 1.E4*epsilon<double>();
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1604,10 +1587,10 @@ void testNistThurber(void)
*/
x<< 1300 ,1500 ,500 ,75 ,1 ,0.4 ,0.05 ;
// do the computation
parameters = LevenbergMarquardt<thurber_functor>::Parameters();
parameters.ftol = 1.E4*epsilon<double>();
parameters.xtol = 1.E4*epsilon<double>();
info = lm.minimize(x, parameters);
lm.resetParameters();
lm.parameters.ftol = 1.E4*epsilon<double>();
lm.parameters.xtol = 1.E4*epsilon<double>();
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1672,10 +1655,9 @@ void testNistRat43(void)
// do the computation
rat43_functor functor;
LevenbergMarquardt<rat43_functor> lm(functor);
LevenbergMarquardt<rat43_functor>::Parameters parameters;
parameters.ftol = 1.E6*epsilon<double>();
parameters.xtol = 1.E6*epsilon<double>();
info = lm.minimize(x, parameters);
lm.parameters.ftol = 1.E6*epsilon<double>();
lm.parameters.xtol = 1.E6*epsilon<double>();
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1694,10 +1676,10 @@ void testNistRat43(void)
*/
x<< 700., 5., 0.75, 1.3;
// do the computation
parameters = LevenbergMarquardt<rat43_functor>::Parameters(); // get default back
parameters.ftol = 1.E5*epsilon<double>();
parameters.xtol = 1.E5*epsilon<double>();
info = lm.minimize(x, parameters);
lm.resetParameters();
lm.parameters.ftol = 1.E5*epsilon<double>();
lm.parameters.xtol = 1.E5*epsilon<double>();
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1760,8 +1742,7 @@ void testNistEckerle4(void)
// do the computation
eckerle4_functor functor;
LevenbergMarquardt<eckerle4_functor> lm(functor);
LevenbergMarquardt<eckerle4_functor>::Parameters parameters;
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);
@ -1779,7 +1760,7 @@ void testNistEckerle4(void)
*/
x<< 1.5, 5., 450.;
// do the computation
info = lm.minimize(x, parameters);
info = lm.minimize(x);
// check return value
VERIFY( 1 == info);