mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 01:29:35 +08:00
Document HouseholderSequence.
Incomplete: I did not explain the difference between OnTheLeft and OnTheRight, and there is only one example.
This commit is contained in:
parent
583f963517
commit
47a9d2ed54
@ -210,9 +210,11 @@ enum {
|
||||
DontAlign = 0x2
|
||||
};
|
||||
|
||||
/** \brief Enum for specifying whether to apply or solve on the left or right.
|
||||
*/
|
||||
enum {
|
||||
OnTheLeft = 1,
|
||||
OnTheRight = 2
|
||||
OnTheLeft = 1, /**< \brief Apply transformation on the left. */
|
||||
OnTheRight = 2 /**< \brief Apply transformation on the right. */
|
||||
};
|
||||
|
||||
/* the following could as well be written:
|
||||
|
@ -29,12 +29,28 @@
|
||||
/** \ingroup Householder_Module
|
||||
* \householder_module
|
||||
* \class HouseholderSequence
|
||||
* \brief Represents a sequence of householder reflections with decreasing size
|
||||
* \brief Sequence of Householder reflections acting on subspaces with decreasing size
|
||||
* \tparam VectorsType type of matrix containing the Householder vectors
|
||||
* \tparam CoeffsType type of vector containing the Householder coefficients
|
||||
* \tparam Side either OnTheLeft (the default) or OnTheRight
|
||||
*
|
||||
* This class represents a product sequence of householder reflections \f$ H = \Pi_0^{n-1} H_i \f$
|
||||
* where \f$ H_i \f$ is the i-th householder transformation \f$ I - h_i v_i v_i^* \f$,
|
||||
* \f$ v_i \f$ is the i-th householder vector \f$ [ 1, m_vectors(i+1,i), m_vectors(i+2,i), ...] \f$
|
||||
* and \f$ h_i \f$ is the i-th householder coefficient \c m_coeffs[i].
|
||||
* This class represents a product sequence of Householder reflections where the first Householder reflection
|
||||
* acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by
|
||||
* the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace
|
||||
* spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but
|
||||
* one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections
|
||||
* are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods
|
||||
* HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(),
|
||||
* and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence.
|
||||
*
|
||||
* More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the
|
||||
* form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i
|
||||
* v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$
|
||||
* v_i \f$ is a vector of the form
|
||||
* \f[
|
||||
* v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
|
||||
* \f]
|
||||
* The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector.
|
||||
*
|
||||
* Typical usages are listed below, where H is a HouseholderSequence:
|
||||
* \code
|
||||
@ -46,6 +62,8 @@
|
||||
* \endcode
|
||||
* In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
|
||||
*
|
||||
* See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.
|
||||
*
|
||||
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
|
||||
@ -129,12 +147,30 @@ template<typename VectorsType, typename CoeffsType, int Side> class HouseholderS
|
||||
Side
|
||||
> ConjugateReturnType;
|
||||
|
||||
/** \brief Constructor.
|
||||
* \param[in] v %Matrix containing the essential parts of the Householder vectors
|
||||
* \param[in] h Vector containing the Householder coefficients
|
||||
*
|
||||
* Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The
|
||||
* i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th
|
||||
* Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the
|
||||
* i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many
|
||||
* Householder reflections as there are columns.
|
||||
*
|
||||
* \note The %HouseholderSequence object stores \p v and \p h by reference.
|
||||
*
|
||||
* Example: \include HouseholderSequence_HouseholderSequence.cpp
|
||||
* Output: \verbinclude HouseholderSequence_HouseholderSequence.out
|
||||
*
|
||||
* \sa setLength(), setShift()
|
||||
*/
|
||||
HouseholderSequence(const VectorsType& v, const CoeffsType& h)
|
||||
: m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()),
|
||||
m_shift(0)
|
||||
{
|
||||
}
|
||||
|
||||
/** \brief Copy constructor. */
|
||||
HouseholderSequence(const HouseholderSequence& other)
|
||||
: m_vectors(other.m_vectors),
|
||||
m_coeffs(other.m_coeffs),
|
||||
@ -144,20 +180,45 @@ template<typename VectorsType, typename CoeffsType, int Side> class HouseholderS
|
||||
{
|
||||
}
|
||||
|
||||
/** \brief Number of rows of transformation viewed as a matrix.
|
||||
* \returns Number of rows
|
||||
* \details This equals the dimension of the space that the transformation acts on.
|
||||
*/
|
||||
Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); }
|
||||
|
||||
/** \brief Number of columns of transformation viewed as a matrix.
|
||||
* \returns Number of columns
|
||||
* \details This equals the dimension of the space that the transformation acts on.
|
||||
*/
|
||||
Index cols() const { return rows(); }
|
||||
|
||||
/** \brief Essential part of a Householder vector.
|
||||
* \param[in] k Index of Householder reflection
|
||||
* \returns Vector containing non-trivial entries of k-th Householder vector
|
||||
*
|
||||
* This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of
|
||||
* length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector
|
||||
* \f[
|
||||
* v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
|
||||
* \f]
|
||||
* The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v
|
||||
* passed to the constructor.
|
||||
*
|
||||
* \sa setShift(), shift()
|
||||
*/
|
||||
const EssentialVectorType essentialVector(Index k) const
|
||||
{
|
||||
eigen_assert(k >= 0 && k < m_length);
|
||||
return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k);
|
||||
}
|
||||
|
||||
/** \brief %Transpose of the Householder sequence. */
|
||||
HouseholderSequence transpose() const
|
||||
{
|
||||
return HouseholderSequence(*this).setTrans(!m_trans);
|
||||
}
|
||||
|
||||
/** \brief Complex conjugate of the Householder sequence. */
|
||||
ConjugateReturnType conjugate() const
|
||||
{
|
||||
return ConjugateReturnType(m_vectors, m_coeffs.conjugate())
|
||||
@ -166,11 +227,13 @@ template<typename VectorsType, typename CoeffsType, int Side> class HouseholderS
|
||||
.setShift(m_shift);
|
||||
}
|
||||
|
||||
/** \brief Adjoint (conjugate transpose) of the Householder sequence. */
|
||||
ConjugateReturnType adjoint() const
|
||||
{
|
||||
return conjugate().setTrans(!m_trans);
|
||||
}
|
||||
|
||||
/** \brief Inverse of the Householder sequence (equals the adjoint). */
|
||||
ConjugateReturnType inverse() const { return adjoint(); }
|
||||
|
||||
/** \internal */
|
||||
@ -243,6 +306,13 @@ template<typename VectorsType, typename CoeffsType, int Side> class HouseholderS
|
||||
}
|
||||
}
|
||||
|
||||
/** \brief Computes the product of a Householder sequence with a matrix.
|
||||
* \param[in] other %Matrix being multiplied.
|
||||
* \returns Expression object representing the product.
|
||||
*
|
||||
* This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this
|
||||
* and \f$ M \f$ is the matrix \p other.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
@ -252,6 +322,14 @@ template<typename VectorsType, typename CoeffsType, int Side> class HouseholderS
|
||||
return res;
|
||||
}
|
||||
|
||||
/** \brief Computes the product of a matrix with a Householder sequence.
|
||||
* \param[in] other %Matrix being multiplied.
|
||||
* \param[in] h %HouseholderSequence being multiplied.
|
||||
* \returns Expression object representing the product.
|
||||
*
|
||||
* This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the
|
||||
* Householder sequence represented by \p h.
|
||||
*/
|
||||
template<typename OtherDerived> friend
|
||||
typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence& h)
|
||||
{
|
||||
@ -263,27 +341,55 @@ template<typename VectorsType, typename CoeffsType, int Side> class HouseholderS
|
||||
|
||||
template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl;
|
||||
|
||||
/** \brief Sets the transpose flag.
|
||||
* \param [in] trans New value of the transpose flag.
|
||||
*
|
||||
* By default, the transpose flag is not set. If the transpose flag is set, then this object represents
|
||||
* \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$.
|
||||
*
|
||||
* \sa trans()
|
||||
*/
|
||||
HouseholderSequence& setTrans(bool trans)
|
||||
{
|
||||
m_trans = trans;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \brief Sets the length of the Householder sequence.
|
||||
* \param [in] length New value for the length.
|
||||
*
|
||||
* By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set
|
||||
* to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that
|
||||
* is smaller. After this function is called, the length equals \p length.
|
||||
*
|
||||
* \sa length()
|
||||
*/
|
||||
HouseholderSequence& setLength(Index length)
|
||||
{
|
||||
m_length = length;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \brief Sets the shift of the Householder sequence.
|
||||
* \param [in] shift New value for the shift.
|
||||
*
|
||||
* By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th
|
||||
* column of the matrix \p v passed to the constructor corresponds to the i-th Householder
|
||||
* reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}}
|
||||
* H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th
|
||||
* Householder reflection.
|
||||
*
|
||||
* \sa shift()
|
||||
*/
|
||||
HouseholderSequence& setShift(Index shift)
|
||||
{
|
||||
m_shift = shift;
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool trans() const { return m_trans; }
|
||||
Index length() const { return m_length; }
|
||||
Index shift() const { return m_shift; }
|
||||
bool trans() const { return m_trans; } /**< \brief Returns the transpose flag. */
|
||||
Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */
|
||||
Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */
|
||||
|
||||
protected:
|
||||
typename VectorsType::Nested m_vectors;
|
||||
@ -293,12 +399,22 @@ template<typename VectorsType, typename CoeffsType, int Side> class HouseholderS
|
||||
Index m_shift;
|
||||
};
|
||||
|
||||
/** \ingroup Householder_Module \householder_module
|
||||
* \brief Convenience function for constructing a Householder sequence.
|
||||
* \returns A HouseholderSequence constructed from the specified arguments.
|
||||
*/
|
||||
template<typename VectorsType, typename CoeffsType>
|
||||
HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h)
|
||||
{
|
||||
return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h);
|
||||
}
|
||||
|
||||
/** \ingroup Householder_Module \householder_module
|
||||
* \brief Convenience function for constructing a Householder sequence.
|
||||
* \returns A HouseholderSequence constructed from the specified arguments.
|
||||
* \details This function differs from householderSequence() in that the template argument \p OnTheSide of
|
||||
* the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.
|
||||
*/
|
||||
template<typename VectorsType, typename CoeffsType>
|
||||
HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h)
|
||||
{
|
||||
|
31
doc/snippets/HouseholderSequence_HouseholderSequence.cpp
Normal file
31
doc/snippets/HouseholderSequence_HouseholderSequence.cpp
Normal file
@ -0,0 +1,31 @@
|
||||
Matrix3d v = Matrix3d::Random();
|
||||
cout << "The matrix v is:" << endl;
|
||||
cout << v << endl;
|
||||
|
||||
Vector3d v0(1, v(1,0), v(2,0));
|
||||
cout << "The first Householder vector is: v_0 = " << v0.transpose() << endl;
|
||||
Vector3d v1(0, 1, v(2,1));
|
||||
cout << "The second Householder vector is: v_1 = " << v1.transpose() << endl;
|
||||
Vector3d v2(0, 0, 1);
|
||||
cout << "The third Householder vector is: v_2 = " << v2.transpose() << endl;
|
||||
|
||||
Vector3d h = Vector3d::Random();
|
||||
cout << "The Householder coefficients are: h = " << h.transpose() << endl;
|
||||
|
||||
Matrix3d H0 = Matrix3d::Identity() - h(0) * v0 * v0.adjoint();
|
||||
cout << "The first Householder reflection is represented by H_0 = " << endl;
|
||||
cout << H0 << endl;
|
||||
Matrix3d H1 = Matrix3d::Identity() - h(1) * v1 * v1.adjoint();
|
||||
cout << "The second Householder reflection is represented by H_1 = " << endl;
|
||||
cout << H1 << endl;
|
||||
Matrix3d H2 = Matrix3d::Identity() - h(2) * v2 * v2.adjoint();
|
||||
cout << "The third Householder reflection is represented by H_2 = " << endl;
|
||||
cout << H2 << endl;
|
||||
cout << "Their product is H_0 H_1 H_2 = " << endl;
|
||||
cout << H0 * H1 * H2 << endl;
|
||||
|
||||
HouseholderSequence<Matrix3d, Vector3d> hhSeq(v, h);
|
||||
Matrix3d hhSeqAsMatrix(hhSeq);
|
||||
cout << "If we construct a HouseholderSequence from v and h" << endl;
|
||||
cout << "and convert it to a matrix, we get:" << endl;
|
||||
cout << hhSeqAsMatrix << endl;
|
Loading…
x
Reference in New Issue
Block a user