mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 19:59:05 +08:00
Add a simple cost model to prevent Eigen's parallel GEMM from using too many threads when the inner dimension is small.
Timing for square matrices is unchanged, but both CPU and Wall time are significantly improved for skinny matrices. The benchmarks below are for multiplying NxK * KxN matrices with test names of the form BM_OuterishProd/N/K. Improvements in Wall time: Run on [redacted] (12 X 3501 MHz CPUs); 2016-10-05T17:40:02.462497196-07:00 CPU: Intel Haswell with HyperThreading (6 cores) dL1:32KB dL2:256KB dL3:15MB Benchmark Base (ns) New (ns) Improvement ------------------------------------------------------------------ BM_OuterishProd/64/1 3088 1610 +47.9% BM_OuterishProd/64/4 3562 2414 +32.2% BM_OuterishProd/64/32 8861 7815 +11.8% BM_OuterishProd/128/1 11363 6504 +42.8% BM_OuterishProd/128/4 11128 9794 +12.0% BM_OuterishProd/128/64 27691 27396 +1.1% BM_OuterishProd/256/1 33214 28123 +15.3% BM_OuterishProd/256/4 34312 36818 -7.3% BM_OuterishProd/256/128 174866 176398 -0.9% BM_OuterishProd/512/1 7963684 104224 +98.7% BM_OuterishProd/512/4 7987913 112867 +98.6% BM_OuterishProd/512/256 8198378 1306500 +84.1% BM_OuterishProd/1k/1 7356256 324432 +95.6% BM_OuterishProd/1k/4 8129616 331621 +95.9% BM_OuterishProd/1k/512 27265418 7517538 +72.4% Improvements in CPU time: Run on [redacted] (12 X 3501 MHz CPUs); 2016-10-05T17:40:02.462497196-07:00 CPU: Intel Haswell with HyperThreading (6 cores) dL1:32KB dL2:256KB dL3:15MB Benchmark Base (ns) New (ns) Improvement ------------------------------------------------------------------ BM_OuterishProd/64/1 6169 1608 +73.9% BM_OuterishProd/64/4 7117 2412 +66.1% BM_OuterishProd/64/32 17702 15616 +11.8% BM_OuterishProd/128/1 45415 6498 +85.7% BM_OuterishProd/128/4 44459 9786 +78.0% BM_OuterishProd/128/64 110657 109489 +1.1% BM_OuterishProd/256/1 265158 28101 +89.4% BM_OuterishProd/256/4 274234 183885 +32.9% BM_OuterishProd/256/128 1397160 1408776 -0.8% BM_OuterishProd/512/1 78947048 520703 +99.3% BM_OuterishProd/512/4 86955578 1349742 +98.4% BM_OuterishProd/512/256 74701613 15584661 +79.1% BM_OuterishProd/1k/1 78352601 3877911 +95.1% BM_OuterishProd/1k/4 78521643 3966221 +94.9% BM_OuterishProd/1k/512 258104736 89480530 +65.3%
This commit is contained in:
parent
80b5133789
commit
48c635e223
@ -481,7 +481,7 @@ struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct>
|
||||
|
||||
BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1, true);
|
||||
internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>
|
||||
(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), Dest::Flags&RowMajorBit);
|
||||
(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), a_lhs.cols(), Dest::Flags&RowMajorBit);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -83,7 +83,7 @@ template<typename Index> struct GemmParallelInfo
|
||||
};
|
||||
|
||||
template<bool Condition, typename Functor, typename Index>
|
||||
void parallelize_gemm(const Functor& func, Index rows, Index cols, bool transpose)
|
||||
void parallelize_gemm(const Functor& func, Index rows, Index cols, Index depth, bool transpose)
|
||||
{
|
||||
// TODO when EIGEN_USE_BLAS is defined,
|
||||
// we should still enable OMP for other scalar types
|
||||
@ -92,6 +92,7 @@ void parallelize_gemm(const Functor& func, Index rows, Index cols, bool transpos
|
||||
// the matrix product when multithreading is enabled. This is a temporary
|
||||
// fix to support row-major destination matrices. This whole
|
||||
// parallelizer mechanism has to be redisigned anyway.
|
||||
EIGEN_UNUSED_VARIABLE(depth);
|
||||
EIGEN_UNUSED_VARIABLE(transpose);
|
||||
func(0,rows, 0,cols);
|
||||
#else
|
||||
@ -106,6 +107,12 @@ void parallelize_gemm(const Functor& func, Index rows, Index cols, bool transpos
|
||||
// FIXME this has to be fine tuned
|
||||
Index size = transpose ? rows : cols;
|
||||
Index pb_max_threads = std::max<Index>(1,size / 32);
|
||||
// compute the maximal number of threads from the total amount of work:
|
||||
double work = static_cast<double>(rows) * static_cast<double>(cols) *
|
||||
static_cast<double>(depth);
|
||||
double kMinTaskSize = 50000; // Heuristic.
|
||||
max_threads = std::max<Index>(1, std::min<Index>(max_threads, work / kMinTaskSize));
|
||||
|
||||
// compute the number of threads we are going to use
|
||||
Index threads = std::min<Index>(nbThreads(), pb_max_threads);
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user