add blocked LLT, and bugfix in trsm asserts

This commit is contained in:
Gael Guennebaud 2009-08-01 23:42:51 +02:00
parent 18429156a1
commit 48fc64458c
4 changed files with 119 additions and 111 deletions

View File

@ -116,80 +116,81 @@ template<typename MatrixType, int _UpLo> class LLT
bool m_isInitialized;
};
template<typename MatrixType>
bool ei_inplace_llt_lo(MatrixType& mat)
// forward declaration (defined at the end of this file)
template<int UpLo> struct ei_llt_inplace;
template<> struct ei_llt_inplace<LowerTriangular>
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
assert(mat.rows()==mat.cols());
const int size = mat.rows();
// The biggest overall is the point of reference to which further diagonals
// are compared; if any diagonal is negligible compared
// to the largest overall, the algorithm bails. This cutoff is suggested
// in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
// Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
// Algorithms" page 217, also by Higham.
const RealScalar cutoff = machine_epsilon<Scalar>() * size * mat.diagonal().cwise().abs().maxCoeff();
RealScalar x;
x = ei_real(mat.coeff(0,0));
mat.coeffRef(0,0) = ei_sqrt(x);
if(size==1)
template<typename MatrixType>
static bool unblocked(MatrixType& mat)
{
return true;
}
mat.col(0).end(size-1) = mat.col(0).end(size-1) / ei_real(mat.coeff(0,0));
for (int j = 1; j < size; ++j)
{
x = ei_real(mat.coeff(j,j)) - mat.row(j).start(j).squaredNorm();
if (ei_abs(x) < cutoff) continue;
mat.coeffRef(j,j) = x = ei_sqrt(x);
int endSize = size-j-1;
if (endSize>0)
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
ei_assert(mat.rows()==mat.cols());
const int size = mat.rows();
for(int k = 0; k < size; ++k)
{
mat.col(j).end(endSize) -= (mat.block(j+1, 0, endSize, j) * mat.row(j).start(j).adjoint()).lazy();
mat.col(j).end(endSize) *= RealScalar(1)/x;
int rs = size-k-1; // remaining size
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
RealScalar x = ei_real(mat.coeff(k,k));
if (k>0) x -= mat.row(k).start(k).squaredNorm();
if (x<=RealScalar(0))
return false;
mat.coeffRef(k,k) = x = ei_sqrt(x);
if (k>0 && rs>0) A21 -= (A20 * A10.adjoint()).lazy();
if (rs>0) A21 *= RealScalar(1)/x;
}
}
return true;
}
template<typename MatrixType>
bool ei_inplace_llt_up(MatrixType& mat)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
assert(mat.rows()==mat.cols());
const int size = mat.rows();
const RealScalar cutoff = machine_epsilon<Scalar>() * size * mat.diagonal().cwise().abs().maxCoeff();
RealScalar x;
x = ei_real(mat.coeff(0,0));
mat.coeffRef(0,0) = ei_sqrt(x);
if(size==1)
{
return true;
}
mat.row(0).end(size-1) = mat.row(0).end(size-1) / ei_real(mat.coeff(0,0));
for (int j = 1; j < size; ++j)
template<typename MatrixType>
static bool blocked(MatrixType& m)
{
x = ei_real(mat.coeff(j,j)) - mat.col(j).start(j).squaredNorm();
if (ei_abs(x) < cutoff) continue;
ei_assert(m.rows()==m.cols());
int size = m.rows();
if(size<32)
return unblocked(m);
mat.coeffRef(j,j) = x = ei_sqrt(x);
int blockSize = size/8;
blockSize = (blockSize/16)*16;
blockSize = std::min(std::max(blockSize,8), 128);
int endSize = size-j-1;
if (endSize>0) {
mat.row(j).end(endSize) -= (mat.col(j).start(j).adjoint() * mat.block(0, j+1, j, endSize)).lazy();
mat.row(j).end(endSize) *= RealScalar(1)/x;
for (int k=0; k<size; k+=blockSize)
{
int bs = std::min(blockSize, size-k);
int rs = size - k - bs;
Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
if(!unblocked(A11)) return false;
if(rs>0) A11.conjugate().template triangularView<LowerTriangular>().solveInPlace(A21.transpose());
if(rs>0) A22.template selfadjointView<LowerTriangular>().rankUpdate(A21,-1); // bottleneck
}
return true;
}
};
return true;
}
template<> struct ei_llt_inplace<UpperTriangular>
{
template<typename MatrixType>
static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return ei_llt_inplace<LowerTriangular>::unblocked(matt);
}
template<typename MatrixType>
static EIGEN_STRONG_INLINE bool blocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return ei_llt_inplace<LowerTriangular>::blocked(matt);
}
};
template<typename MatrixType> struct LLT_Traits<MatrixType,LowerTriangular>
{
@ -198,7 +199,7 @@ template<typename MatrixType> struct LLT_Traits<MatrixType,LowerTriangular>
inline static MatrixL getL(const MatrixType& m) { return m; }
inline static MatrixU getU(const MatrixType& m) { return m.adjoint().nestByValue(); }
static bool inplace_decomposition(MatrixType& m)
{ return ei_inplace_llt_lo(m); }
{ return ei_llt_inplace<LowerTriangular>::blocked(m); }
};
template<typename MatrixType> struct LLT_Traits<MatrixType,UpperTriangular>
@ -208,7 +209,7 @@ template<typename MatrixType> struct LLT_Traits<MatrixType,UpperTriangular>
inline static MatrixL getL(const MatrixType& m) { return m.adjoint().nestByValue(); }
inline static MatrixU getU(const MatrixType& m) { return m; }
static bool inplace_decomposition(MatrixType& m)
{ return ei_inplace_llt_up(m); }
{ return ei_llt_inplace<UpperTriangular>::blocked(m); }
};
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix

View File

@ -215,25 +215,25 @@ struct ei_triangular_solver_selector<Lhs,Rhs,OnTheLeft,Mode,CompleteUnrolling,St
* See TriangularView:solve() for the details.
*/
template<typename MatrixType, unsigned int Mode>
template<int Side, typename RhsDerived>
void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<RhsDerived>& _rhs) const
template<int Side, typename OtherDerived>
void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<OtherDerived>& _other) const
{
RhsDerived& rhs = _rhs.const_cast_derived();
OtherDerived& other = _other.const_cast_derived();
ei_assert(cols() == rows());
ei_assert(cols() == rhs.rows());
ei_assert( (Side==OnTheLeft && cols() == other.rows()) || (Side==OnTheRight && cols() == other.cols()) );
ei_assert(!(Mode & ZeroDiagBit));
ei_assert(Mode & (UpperTriangularBit|LowerTriangularBit));
enum { copy = ei_traits<RhsDerived>::Flags & RowMajorBit && RhsDerived::IsVectorAtCompileTime };
enum { copy = ei_traits<OtherDerived>::Flags & RowMajorBit && OtherDerived::IsVectorAtCompileTime };
typedef typename ei_meta_if<copy,
typename ei_plain_matrix_type_column_major<RhsDerived>::type, RhsDerived&>::ret RhsCopy;
RhsCopy rhsCopy(rhs);
typename ei_plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::ret OtherCopy;
OtherCopy otherCopy(other);
ei_triangular_solver_selector<MatrixType, typename ei_unref<RhsCopy>::type,
Side, Mode>::run(_expression(), rhsCopy);
ei_triangular_solver_selector<MatrixType, typename ei_unref<OtherCopy>::type,
Side, Mode>::run(_expression(), otherCopy);
if (copy)
rhs = rhsCopy;
other = otherCopy;
}
/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.

View File

@ -70,7 +70,9 @@ template<typename MatrixType> class Transpose
inline int rows() const { return m_matrix.cols(); }
inline int cols() const { return m_matrix.rows(); }
inline int nonZeros() const { return m_matrix.nonZeros(); }
inline int stride(void) const { return m_matrix.stride(); }
inline int stride() const { return m_matrix.stride(); }
inline Scalar* data() { return m_matrix.data(); }
inline const Scalar* data() const { return m_matrix.data(); }
inline Scalar& coeffRef(int row, int col)
{

View File

@ -49,52 +49,58 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
SquareMatrixType symm = a0 * a0.adjoint();
// let's make sure the matrix is not singular or near singular
MatrixType a1 = MatrixType::Random(rows,cols);
symm += a1 * a1.adjoint();
for (int k=0; k<3; ++k)
{
MatrixType a1 = MatrixType::Random(rows,cols);
symm += a1 * a1.adjoint();
}
SquareMatrixType symmUp = symm.template triangularView<UpperTriangular>();
SquareMatrixType symmLo = symm.template triangularView<LowerTriangular>();
// to test if really Cholesky only uses the upper triangular part, uncomment the following
// FIXME: currently that fails !!
//symm.template part<StrictlyLowerTriangular>().setZero();
#ifdef HAS_GSL
if (ei_is_same_type<RealScalar,double>::ret)
{
typedef GslTraits<Scalar> Gsl;
typename Gsl::Matrix gMatA=0, gSymm=0;
typename Gsl::Vector gVecB=0, gVecX=0;
convert<MatrixType>(symm, gSymm);
convert<MatrixType>(symm, gMatA);
convert<VectorType>(vecB, gVecB);
convert<VectorType>(vecB, gVecX);
Gsl::cholesky(gMatA);
Gsl::cholesky_solve(gMatA, gVecB, gVecX);
VectorType vecX(rows), _vecX, _vecB;
convert(gVecX, _vecX);
symm.llt().solve(vecB, &vecX);
Gsl::prod(gSymm, gVecX, gVecB);
convert(gVecB, _vecB);
// test gsl itself !
VERIFY_IS_APPROX(vecB, _vecB);
VERIFY_IS_APPROX(vecX, _vecX);
Gsl::free(gMatA);
Gsl::free(gSymm);
Gsl::free(gVecB);
Gsl::free(gVecX);
}
// if (ei_is_same_type<RealScalar,double>::ret)
// {
// typedef GslTraits<Scalar> Gsl;
// typename Gsl::Matrix gMatA=0, gSymm=0;
// typename Gsl::Vector gVecB=0, gVecX=0;
// convert<MatrixType>(symm, gSymm);
// convert<MatrixType>(symm, gMatA);
// convert<VectorType>(vecB, gVecB);
// convert<VectorType>(vecB, gVecX);
// Gsl::cholesky(gMatA);
// Gsl::cholesky_solve(gMatA, gVecB, gVecX);
// VectorType vecX(rows), _vecX, _vecB;
// convert(gVecX, _vecX);
// symm.llt().solve(vecB, &vecX);
// Gsl::prod(gSymm, gVecX, gVecB);
// convert(gVecB, _vecB);
// // test gsl itself !
// VERIFY_IS_APPROX(vecB, _vecB);
// VERIFY_IS_APPROX(vecX, _vecX);
//
// Gsl::free(gMatA);
// Gsl::free(gSymm);
// Gsl::free(gVecB);
// Gsl::free(gVecX);
// }
#endif
{
LLT<SquareMatrixType> chol(symm);
VERIFY_IS_APPROX(symm, chol.matrixL().toDense() * chol.matrixL().adjoint().toDense());
chol.solve(vecB, &vecX);
LLT<SquareMatrixType,LowerTriangular> chollo(symmLo);
VERIFY_IS_APPROX(symm, chollo.matrixL().toDense() * chollo.matrixL().adjoint().toDense());
chollo.solve(vecB, &vecX);
VERIFY_IS_APPROX(symm * vecX, vecB);
chol.solve(matB, &matX);
chollo.solve(matB, &matX);
VERIFY_IS_APPROX(symm * matX, matB);
// test the upper mode
LLT<SquareMatrixType,UpperTriangular> cholup(symm);
VERIFY_IS_APPROX(symm, cholup.matrixL().toDense() * chol.matrixL().adjoint().toDense());
LLT<SquareMatrixType,UpperTriangular> cholup(symmUp);
VERIFY_IS_APPROX(symm, cholup.matrixL().toDense() * cholup.matrixL().adjoint().toDense());
cholup.solve(vecB, &vecX);
VERIFY_IS_APPROX(symm * vecX, vecB);
cholup.solve(matB, &matX);
@ -147,9 +153,8 @@ void test_cholesky()
CALL_SUBTEST( cholesky(Matrix2d()) );
CALL_SUBTEST( cholesky(Matrix3f()) );
CALL_SUBTEST( cholesky(Matrix4d()) );
CALL_SUBTEST( cholesky(MatrixXcd(7,7)) );
CALL_SUBTEST( cholesky(MatrixXd(17,17)) );
CALL_SUBTEST( cholesky(MatrixXf(200,200)) );
CALL_SUBTEST( cholesky(MatrixXcd(100,100)) );
CALL_SUBTEST( cholesky(MatrixXd(200,200)) );
}
CALL_SUBTEST( cholesky_verify_assert<Matrix3f>() );