mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 19:59:05 +08:00
Added ability to reverse the order of the coefficients in a tensor
This commit is contained in:
parent
b00fe1590d
commit
4928ea1212
207
unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h
Normal file
207
unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h
Normal file
@ -0,0 +1,207 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com>
|
||||||
|
// Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||||
|
//
|
||||||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||||
|
|
||||||
|
#ifndef EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
|
||||||
|
#define EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
|
||||||
|
namespace Eigen {
|
||||||
|
|
||||||
|
/** \class TensorReverse
|
||||||
|
* \ingroup CXX11_Tensor_Module
|
||||||
|
*
|
||||||
|
* \brief Tensor reverse elements class.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
namespace internal {
|
||||||
|
template<typename ReverseDimensions, typename XprType>
|
||||||
|
struct traits<TensorReverseOp<ReverseDimensions,
|
||||||
|
XprType> > : public traits<XprType>
|
||||||
|
{
|
||||||
|
typedef typename XprType::Scalar Scalar;
|
||||||
|
typedef traits<XprType> XprTraits;
|
||||||
|
typedef typename packet_traits<Scalar>::type Packet;
|
||||||
|
typedef typename XprTraits::StorageKind StorageKind;
|
||||||
|
typedef typename XprTraits::Index Index;
|
||||||
|
typedef typename XprType::Nested Nested;
|
||||||
|
typedef typename remove_reference<Nested>::type _Nested;
|
||||||
|
static const int NumDimensions = XprTraits::NumDimensions;
|
||||||
|
static const int Layout = XprTraits::Layout;
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename ReverseDimensions, typename XprType>
|
||||||
|
struct eval<TensorReverseOp<ReverseDimensions, XprType>, Eigen::Dense>
|
||||||
|
{
|
||||||
|
typedef const TensorReverseOp<ReverseDimensions, XprType>& type;
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename ReverseDimensions, typename XprType>
|
||||||
|
struct nested<TensorReverseOp<ReverseDimensions, XprType>, 1,
|
||||||
|
typename eval<TensorReverseOp<ReverseDimensions, XprType> >::type>
|
||||||
|
{
|
||||||
|
typedef TensorReverseOp<ReverseDimensions, XprType> type;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // end namespace internal
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
template<typename ReverseDimensions, typename XprType>
|
||||||
|
class TensorReverseOp : public TensorBase<TensorReverseOp<ReverseDimensions,
|
||||||
|
XprType>, ReadOnlyAccessors>
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
typedef typename Eigen::internal::traits<TensorReverseOp>::Scalar Scalar;
|
||||||
|
typedef typename Eigen::internal::traits<TensorReverseOp>::Packet Packet;
|
||||||
|
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
||||||
|
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||||
|
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||||
|
typedef typename Eigen::internal::nested<TensorReverseOp>::type Nested;
|
||||||
|
typedef typename Eigen::internal::traits<TensorReverseOp>::StorageKind
|
||||||
|
StorageKind;
|
||||||
|
typedef typename Eigen::internal::traits<TensorReverseOp>::Index Index;
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReverseOp(const XprType& expr,
|
||||||
|
const ReverseDimensions& reverse_dims)
|
||||||
|
: m_xpr(expr), m_reverse_dims(reverse_dims) {}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
const ReverseDimensions& reverse() const { return m_reverse_dims; }
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC
|
||||||
|
const typename internal::remove_all<typename XprType::Nested>::type&
|
||||||
|
expression() const { return m_xpr; }
|
||||||
|
|
||||||
|
protected:
|
||||||
|
typename XprType::Nested m_xpr;
|
||||||
|
const ReverseDimensions m_reverse_dims;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// Eval as rvalue
|
||||||
|
template<typename ReverseDimensions, typename ArgType, typename Device>
|
||||||
|
struct TensorEvaluator<const TensorReverseOp<ReverseDimensions, ArgType>, Device>
|
||||||
|
{
|
||||||
|
typedef TensorReverseOp<ReverseDimensions, ArgType> XprType;
|
||||||
|
typedef typename XprType::Index Index;
|
||||||
|
static const int NumDims = internal::array_size<ReverseDimensions>::value;
|
||||||
|
typedef DSizes<Index, NumDims> Dimensions;
|
||||||
|
|
||||||
|
enum {
|
||||||
|
IsAligned = false,
|
||||||
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
||||||
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
||||||
|
CoordAccess = false, // to be implemented
|
||||||
|
};
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op,
|
||||||
|
const Device& device)
|
||||||
|
: m_impl(op.expression(), device), m_reverse(op.reverse())
|
||||||
|
{
|
||||||
|
// Compute strides
|
||||||
|
m_dimensions = m_impl.dimensions();
|
||||||
|
if (Layout == ColMajor) {
|
||||||
|
m_strides[0] = 1;
|
||||||
|
for (int i = 1; i < NumDims; ++i) {
|
||||||
|
m_strides[i] = m_strides[i-1] * m_dimensions[i-1];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
m_strides[NumDims-1] = 1;
|
||||||
|
for (int i = NumDims - 2; i >= 0; --i) {
|
||||||
|
m_strides[i] = m_strides[i+1] * m_dimensions[i+1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
typedef typename XprType::Scalar Scalar;
|
||||||
|
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||||
|
typedef typename XprType::PacketReturnType PacketReturnType;
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
const Dimensions& dimensions() const { return m_dimensions; }
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
|
||||||
|
m_impl.evalSubExprsIfNeeded(NULL);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
||||||
|
m_impl.cleanup();
|
||||||
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
||||||
|
{
|
||||||
|
eigen_assert(index < dimensions().TotalSize());
|
||||||
|
Index inputIndex = 0;
|
||||||
|
if (Layout == ColMajor) {
|
||||||
|
for (int i = NumDims - 1; i > 0; --i) {
|
||||||
|
Index idx = index / m_strides[i];
|
||||||
|
index -= idx * m_strides[i];
|
||||||
|
if (m_reverse[i]) {
|
||||||
|
idx = m_dimensions[i] - idx - 1;
|
||||||
|
}
|
||||||
|
inputIndex += idx * m_strides[i] ;
|
||||||
|
}
|
||||||
|
if (m_reverse[0]) {
|
||||||
|
inputIndex += (m_dimensions[0] - index - 1);
|
||||||
|
} else {
|
||||||
|
inputIndex += index;
|
||||||
|
}
|
||||||
|
return m_impl.coeff(inputIndex);
|
||||||
|
} else {
|
||||||
|
for (int i = 0; i < NumDims - 1; ++i) {
|
||||||
|
Index idx = index / m_strides[i];
|
||||||
|
index -= idx * m_strides[i];
|
||||||
|
if (m_reverse[i]) {
|
||||||
|
idx = m_dimensions[i] - idx - 1;
|
||||||
|
}
|
||||||
|
inputIndex += idx * m_strides[i] ;
|
||||||
|
}
|
||||||
|
if (m_reverse[NumDims-1]) {
|
||||||
|
inputIndex += (m_dimensions[NumDims-1] - index - 1);
|
||||||
|
} else {
|
||||||
|
inputIndex += index;
|
||||||
|
}
|
||||||
|
return m_impl.coeff(inputIndex);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<int LoadMode>
|
||||||
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||||
|
PacketReturnType packet(Index index) const
|
||||||
|
{
|
||||||
|
const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
|
||||||
|
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||||
|
eigen_assert(index+packetSize-1 < dimensions().TotalSize());
|
||||||
|
|
||||||
|
// TODO(ndjaitly): write a better packing routine that uses
|
||||||
|
// local structure.
|
||||||
|
EIGEN_ALIGN_DEFAULT typename internal::remove_const<CoeffReturnType>::type
|
||||||
|
values[packetSize];
|
||||||
|
for (int i = 0; i < packetSize; ++i) {
|
||||||
|
values[i] = coeff(index+i);
|
||||||
|
}
|
||||||
|
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
|
||||||
|
return rslt;
|
||||||
|
}
|
||||||
|
|
||||||
|
Scalar* data() const { return NULL; }
|
||||||
|
|
||||||
|
protected:
|
||||||
|
Dimensions m_dimensions;
|
||||||
|
array<Index, NumDims> m_strides;
|
||||||
|
TensorEvaluator<ArgType, Device> m_impl;
|
||||||
|
ReverseDimensions m_reverse;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
} // end namespace Eigen
|
||||||
|
|
||||||
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_REVERSE_H
|
167
unsupported/test/cxx11_tensor_reverse.cpp
Normal file
167
unsupported/test/cxx11_tensor_reverse.cpp
Normal file
@ -0,0 +1,167 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com and
|
||||||
|
// Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||||
|
//
|
||||||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||||
|
|
||||||
|
#include "main.h"
|
||||||
|
|
||||||
|
#include <Eigen/CXX11/Tensor>
|
||||||
|
|
||||||
|
using Eigen::Tensor;
|
||||||
|
using Eigen::array;
|
||||||
|
|
||||||
|
template <int DataLayout>
|
||||||
|
static void test_simple_reverse()
|
||||||
|
{
|
||||||
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
||||||
|
tensor.setRandom();
|
||||||
|
|
||||||
|
array<bool, 4> dim_rev;
|
||||||
|
dim_rev[0] = false;
|
||||||
|
dim_rev[1] = true;
|
||||||
|
dim_rev[2] = true;
|
||||||
|
dim_rev[3] = false;
|
||||||
|
|
||||||
|
Tensor<float, 4, DataLayout> reversed_tensor;
|
||||||
|
reversed_tensor = tensor.reverse(dim_rev);
|
||||||
|
|
||||||
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2);
|
||||||
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3);
|
||||||
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5);
|
||||||
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7);
|
||||||
|
|
||||||
|
for (int i = 0; i < 2; ++i) {
|
||||||
|
for (int j = 0; j < 3; ++j) {
|
||||||
|
for (int k = 0; k < 5; ++k) {
|
||||||
|
for (int l = 0; l < 7; ++l) {
|
||||||
|
VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(i,2-j,4-k,l));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
dim_rev[0] = true;
|
||||||
|
dim_rev[1] = false;
|
||||||
|
dim_rev[2] = false;
|
||||||
|
dim_rev[3] = false;
|
||||||
|
|
||||||
|
reversed_tensor = tensor.reverse(dim_rev);
|
||||||
|
|
||||||
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2);
|
||||||
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3);
|
||||||
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5);
|
||||||
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7);
|
||||||
|
|
||||||
|
|
||||||
|
for (int i = 0; i < 2; ++i) {
|
||||||
|
for (int j = 0; j < 3; ++j) {
|
||||||
|
for (int k = 0; k < 5; ++k) {
|
||||||
|
for (int l = 0; l < 7; ++l) {
|
||||||
|
VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,l));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
dim_rev[0] = true;
|
||||||
|
dim_rev[1] = false;
|
||||||
|
dim_rev[2] = false;
|
||||||
|
dim_rev[3] = true;
|
||||||
|
|
||||||
|
reversed_tensor = tensor.reverse(dim_rev);
|
||||||
|
|
||||||
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2);
|
||||||
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3);
|
||||||
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5);
|
||||||
|
VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7);
|
||||||
|
|
||||||
|
|
||||||
|
for (int i = 0; i < 2; ++i) {
|
||||||
|
for (int j = 0; j < 3; ++j) {
|
||||||
|
for (int k = 0; k < 5; ++k) {
|
||||||
|
for (int l = 0; l < 7; ++l) {
|
||||||
|
VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,6-l));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template <int DataLayout>
|
||||||
|
static void test_expr_reverse()
|
||||||
|
{
|
||||||
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
||||||
|
tensor.setRandom();
|
||||||
|
|
||||||
|
array<bool, 4> dim_rev;
|
||||||
|
dim_rev[0] = false;
|
||||||
|
dim_rev[1] = true;
|
||||||
|
dim_rev[2] = false;
|
||||||
|
dim_rev[3] = true;
|
||||||
|
|
||||||
|
|
||||||
|
Tensor<float, 4, DataLayout> expected;
|
||||||
|
expected = tensor.reverse(dim_rev);
|
||||||
|
|
||||||
|
Tensor<float, 4, DataLayout> result(2,3,5,7);
|
||||||
|
|
||||||
|
array<ptrdiff_t, 4> src_slice_dim{{2,3,1,7}};
|
||||||
|
array<ptrdiff_t, 4> src_slice_start{{0,0,0,0}};
|
||||||
|
array<ptrdiff_t, 4> dst_slice_dim{{2,3,1,7}};
|
||||||
|
array<ptrdiff_t, 4> dst_slice_start{{0,0,0,0}};
|
||||||
|
|
||||||
|
for (int i = 0; i < 5; ++i) {
|
||||||
|
result.slice(dst_slice_start, dst_slice_dim) =
|
||||||
|
tensor.slice(src_slice_start, src_slice_dim).reverse(dim_rev);
|
||||||
|
src_slice_start[2] += 1;
|
||||||
|
dst_slice_start[2] += 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
VERIFY_IS_EQUAL(result.dimension(0), 2);
|
||||||
|
VERIFY_IS_EQUAL(result.dimension(1), 3);
|
||||||
|
VERIFY_IS_EQUAL(result.dimension(2), 5);
|
||||||
|
VERIFY_IS_EQUAL(result.dimension(3), 7);
|
||||||
|
|
||||||
|
for (int i = 0; i < expected.dimension(0); ++i) {
|
||||||
|
for (int j = 0; j < expected.dimension(1); ++j) {
|
||||||
|
for (int k = 0; k < expected.dimension(2); ++k) {
|
||||||
|
for (int l = 0; l < expected.dimension(3); ++l) {
|
||||||
|
VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_slice_start[2] = 0;
|
||||||
|
result.setRandom();
|
||||||
|
for (int i = 0; i < 5; ++i) {
|
||||||
|
result.slice(dst_slice_start, dst_slice_dim) =
|
||||||
|
tensor.reverse(dim_rev).slice(dst_slice_start, dst_slice_dim);
|
||||||
|
dst_slice_start[2] += 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < expected.dimension(0); ++i) {
|
||||||
|
for (int j = 0; j < expected.dimension(1); ++j) {
|
||||||
|
for (int k = 0; k < expected.dimension(2); ++k) {
|
||||||
|
for (int l = 0; l < expected.dimension(3); ++l) {
|
||||||
|
VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void test_cxx11_tensor_reverse()
|
||||||
|
{
|
||||||
|
CALL_SUBTEST(test_simple_reverse<ColMajor>());
|
||||||
|
CALL_SUBTEST(test_simple_reverse<RowMajor>());
|
||||||
|
CALL_SUBTEST(test_expr_reverse<ColMajor>());
|
||||||
|
CALL_SUBTEST(test_expr_reverse<RowMajor>());
|
||||||
|
}
|
Loading…
x
Reference in New Issue
Block a user