mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-28 23:04:18 +08:00
trivial fixes
This commit is contained in:
parent
5e8dee7a19
commit
4958c53bfb
@ -1,14 +1,14 @@
|
||||
|
||||
template <typename Scalar>
|
||||
void ei_dogleg(
|
||||
Matrix< Scalar, Dynamic, 1 > &r__,
|
||||
Matrix< Scalar, Dynamic, 1 > &r,
|
||||
const Matrix< Scalar, Dynamic, 1 > &diag,
|
||||
const Matrix< Scalar, Dynamic, 1 > &qtb,
|
||||
Scalar delta,
|
||||
Matrix< Scalar, Dynamic, 1 > &x)
|
||||
{
|
||||
/* Local variables */
|
||||
int i, j, k, l, jj, jp1;
|
||||
int i, j, k, l, jj;
|
||||
Scalar sum, temp, alpha, bnorm;
|
||||
Scalar gnorm, qnorm;
|
||||
Scalar sgnorm;
|
||||
@ -25,35 +25,27 @@ void ei_dogleg(
|
||||
jj = n * (n + 1) / 2;
|
||||
for (k = 0; k < n; ++k) {
|
||||
j = n - k - 1;
|
||||
jp1 = j + 1;
|
||||
jj -= k+1;
|
||||
l = jj + 1;
|
||||
sum = 0.;
|
||||
if (n < jp1) {
|
||||
goto L20;
|
||||
}
|
||||
for (i = jp1; i < n; ++i) {
|
||||
sum += r__[l] * x[i];
|
||||
for (i = j+1; i < n; ++i) {
|
||||
sum += r[l] * x[i];
|
||||
++l;
|
||||
/* L10: */
|
||||
}
|
||||
L20:
|
||||
temp = r__[jj];
|
||||
if (temp != 0.) {
|
||||
goto L40;
|
||||
}
|
||||
l = j;
|
||||
for (i = 0; i <= j; ++i) {
|
||||
/* Computing MAX */
|
||||
temp = std::max(temp,ei_abs(r__[l]));
|
||||
l = l + n - i;
|
||||
/* L30: */
|
||||
}
|
||||
temp = epsmch * temp;
|
||||
temp = r[jj];
|
||||
if (temp == 0.) {
|
||||
temp = epsmch;
|
||||
l = j;
|
||||
for (i = 0; i <= j; ++i) {
|
||||
/* Computing MAX */
|
||||
temp = std::max(temp,ei_abs(r[l]));
|
||||
l = l + n - i;
|
||||
/* L30: */
|
||||
}
|
||||
temp = epsmch * temp;
|
||||
if (temp == 0.) {
|
||||
temp = epsmch;
|
||||
}
|
||||
}
|
||||
L40:
|
||||
x[j] = (qtb[j] - sum) / temp;
|
||||
/* L50: */
|
||||
}
|
||||
@ -66,10 +58,8 @@ L40:
|
||||
/* L60: */
|
||||
}
|
||||
qnorm = wa2.stableNorm();
|
||||
if (qnorm <= delta) {
|
||||
/* goto L140; */
|
||||
if (qnorm <= delta)
|
||||
return;
|
||||
}
|
||||
|
||||
/* the gauss-newton direction is not acceptable. */
|
||||
/* next, calculate the scaled gradient direction. */
|
||||
@ -78,7 +68,7 @@ L40:
|
||||
for (j = 0; j < n; ++j) {
|
||||
temp = qtb[j];
|
||||
for (i = j; i < n; ++i) {
|
||||
wa1[i] += r__[l] * temp;
|
||||
wa1[i] += r[l] * temp;
|
||||
++l;
|
||||
/* L70: */
|
||||
}
|
||||
@ -107,7 +97,7 @@ L40:
|
||||
for (j = 0; j < n; ++j) {
|
||||
sum = 0.;
|
||||
for (i = j; i < n; ++i) {
|
||||
sum += r__[l] * wa1[i];
|
||||
sum += r[l] * wa1[i];
|
||||
++l;
|
||||
/* L100: */
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
|
||||
template <typename Scalar>
|
||||
void ei_lmpar(
|
||||
Matrix< Scalar, Dynamic, Dynamic > &r__,
|
||||
Matrix< Scalar, Dynamic, Dynamic > &r,
|
||||
const VectorXi &ipvt,
|
||||
const Matrix< Scalar, Dynamic, 1 > &diag,
|
||||
const Matrix< Scalar, Dynamic, 1 > &qtb,
|
||||
@ -13,7 +13,6 @@ void ei_lmpar(
|
||||
/* Local variables */
|
||||
int i, j, k, l;
|
||||
Scalar fp;
|
||||
int jm1, jp1;
|
||||
Scalar sum, parc, parl;
|
||||
int iter;
|
||||
Scalar temp, paru;
|
||||
@ -24,7 +23,7 @@ void ei_lmpar(
|
||||
|
||||
/* Function Body */
|
||||
const Scalar dwarf = std::numeric_limits<Scalar>::min();
|
||||
const int n = r__.cols();
|
||||
const int n = r.cols();
|
||||
assert(n==diag.size());
|
||||
assert(n==qtb.size());
|
||||
assert(n==x.size());
|
||||
@ -37,18 +36,17 @@ void ei_lmpar(
|
||||
nsing = n-1;
|
||||
for (j = 0; j < n; ++j) {
|
||||
wa1[j] = qtb[j];
|
||||
if (r__(j,j) == 0. && nsing == n-1)
|
||||
if (r(j,j) == 0. && nsing == n-1)
|
||||
nsing = j - 1;
|
||||
if (nsing < n-1)
|
||||
wa1[j] = 0.;
|
||||
}
|
||||
for (k = 0; k <= nsing; ++k) {
|
||||
j = nsing - k;
|
||||
wa1[j] /= r__(j,j);
|
||||
wa1[j] /= r(j,j);
|
||||
temp = wa1[j];
|
||||
jm1 = j - 1;
|
||||
for (i = 0; i <= jm1; ++i)
|
||||
wa1[i] -= r__(i,j) * temp;
|
||||
for (i = 0; i < j ; ++i)
|
||||
wa1[i] -= r(i,j) * temp;
|
||||
}
|
||||
|
||||
for (j = 0; j < n; ++j) {
|
||||
@ -63,7 +61,6 @@ void ei_lmpar(
|
||||
iter = 0;
|
||||
for (j = 0; j < n; ++j) {
|
||||
wa2[j] = diag[j] * x[j];
|
||||
/* L70: */
|
||||
}
|
||||
dxnorm = wa2.blueNorm();
|
||||
fp = dxnorm - delta;
|
||||
@ -85,10 +82,9 @@ void ei_lmpar(
|
||||
}
|
||||
for (j = 0; j < n; ++j) {
|
||||
sum = 0.;
|
||||
jm1 = j - 1;
|
||||
for (i = 0; i <= jm1; ++i)
|
||||
sum += r__(i,j) * wa1[i];
|
||||
wa1[j] = (wa1[j] - sum) / r__(j,j);
|
||||
for (i = 0; i < j; ++i)
|
||||
sum += r(i,j) * wa1[i];
|
||||
wa1[j] = (wa1[j] - sum) / r(j,j);
|
||||
}
|
||||
temp = wa1.blueNorm();
|
||||
parl = fp / delta / temp / temp;
|
||||
@ -99,7 +95,7 @@ L120:
|
||||
for (j = 0; j < n; ++j) {
|
||||
sum = 0.;
|
||||
for (i = 0; i <= j; ++i) {
|
||||
sum += r__(i,j) * qtb[i];
|
||||
sum += r(i,j) * qtb[i];
|
||||
/* L130: */
|
||||
}
|
||||
l = ipvt[j]-1;
|
||||
@ -137,7 +133,7 @@ L150:
|
||||
wa1[j] = temp * diag[j];
|
||||
/* L160: */
|
||||
}
|
||||
ei_qrsolv<Scalar>(n, r__.data(), r__.rows(), ipvt.data(), wa1.data(), qtb.data(), x.data(), sdiag.data(), wa2.data());
|
||||
ei_qrsolv<Scalar>(n, r.data(), r.rows(), ipvt.data(), wa1.data(), qtb.data(), x.data(), sdiag.data(), wa2.data());
|
||||
for (j = 0; j < n; ++j) {
|
||||
wa2[j] = diag[j] * x[j];
|
||||
/* L170: */
|
||||
@ -165,9 +161,8 @@ L150:
|
||||
for (j = 0; j < n; ++j) {
|
||||
wa1[j] /= sdiag[j];
|
||||
temp = wa1[j];
|
||||
jp1 = j + 1;
|
||||
for (i = jp1; i < n; ++i)
|
||||
wa1[i] -= r__(i,j) * temp;
|
||||
for (i = j+1; i < n; ++i)
|
||||
wa1[i] -= r(i,j) * temp;
|
||||
}
|
||||
temp = wa1.blueNorm();
|
||||
parc = fp / delta / temp / temp;
|
||||
@ -197,8 +192,5 @@ L220:
|
||||
par = 0.;
|
||||
}
|
||||
return;
|
||||
|
||||
/* last card of subroutine lmpar. */
|
||||
|
||||
} /* lmpar_ */
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user