From 49a8a1e07a2840f70d0960f0ce88dfe739c9848c Mon Sep 17 00:00:00 2001 From: Essex Edwards Date: Fri, 14 Jan 2022 19:48:54 +0000 Subject: [PATCH] Minor correction/clarification to LSCG solver documentation --- Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h | 2 +- doc/SparseLinearSystems.dox | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h b/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h index f59fa05b5..f9feb7284 100644 --- a/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +++ b/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h @@ -113,7 +113,7 @@ struct traits > /** \ingroup IterativeLinearSolvers_Module * \brief A conjugate gradient solver for sparse (or dense) least-square problems * - * This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm. + * This class solves for the least-squares solution to A x = b using an iterative conjugate gradient algorithm. * The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability. * Otherwise, the SparseLU or SparseQR classes might be preferable. * The matrix A and the vectors x and b can be either dense or sparse. diff --git a/doc/SparseLinearSystems.dox b/doc/SparseLinearSystems.dox index a5e3b642c..f208e5862 100644 --- a/doc/SparseLinearSystems.dox +++ b/doc/SparseLinearSystems.dox @@ -42,7 +42,7 @@ They are summarized in the following tables: LeastSquaresConjugateGradient \n \#includeCG for rectangular least-square problemRectangular IdentityPreconditioner, [LeastSquareDiagonalPreconditioner] - Solve for min |A'Ax-b|^2 without forming A'A + Solve for min |Ax-b|^2 without forming A'A BiCGSTAB \n \#includeIterative stabilized bi-conjugate gradientSquare IdentityPreconditioner, [DiagonalPreconditioner], IncompleteLUT