mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-14 20:56:00 +08:00
Silenced some compilation warnings triggered by nvcc
This commit is contained in:
parent
40e6250fc3
commit
4aac55f684
@ -238,11 +238,14 @@ struct GpuDevice {
|
|||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
#ifndef __CUDA_ARCH__
|
||||||
#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
|
#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \
|
||||||
(kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \
|
(kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \
|
||||||
assert(cudaGetLastError() == cudaSuccess);
|
assert(cudaGetLastError() == cudaSuccess);
|
||||||
|
#else
|
||||||
|
#define LAUNCH_CUDA_KERNEL(...) \
|
||||||
|
eigen_assert(false && "Cannot launch a kernel from another kernel");
|
||||||
|
#endif
|
||||||
|
|
||||||
// FIXME: Should be device and kernel specific.
|
// FIXME: Should be device and kernel specific.
|
||||||
#ifdef __CUDACC__
|
#ifdef __CUDACC__
|
||||||
|
@ -156,14 +156,14 @@ template <typename Expression>
|
|||||||
class TensorExecutor<Expression, GpuDevice, false> {
|
class TensorExecutor<Expression, GpuDevice, false> {
|
||||||
public:
|
public:
|
||||||
typedef typename Expression::Index Index;
|
typedef typename Expression::Index Index;
|
||||||
static void run(const Expression& expr, const GpuDevice& device);
|
EIGEN_DEVICE_FUNC static void run(const Expression& expr, const GpuDevice& device);
|
||||||
};
|
};
|
||||||
|
|
||||||
template <typename Expression>
|
template <typename Expression>
|
||||||
class TensorExecutor<Expression, GpuDevice, true> {
|
class TensorExecutor<Expression, GpuDevice, true> {
|
||||||
public:
|
public:
|
||||||
typedef typename Expression::Index Index;
|
typedef typename Expression::Index Index;
|
||||||
static void run(const Expression& expr, const GpuDevice& device);
|
EIGEN_DEVICE_FUNC static void run(const Expression& expr, const GpuDevice& device);
|
||||||
};
|
};
|
||||||
|
|
||||||
#if defined(__CUDACC__)
|
#if defined(__CUDACC__)
|
||||||
@ -213,8 +213,9 @@ EigenMetaKernel_Vectorizable(Evaluator memcopied_eval, Index size) {
|
|||||||
|
|
||||||
/*static*/
|
/*static*/
|
||||||
template <typename Expression>
|
template <typename Expression>
|
||||||
inline void TensorExecutor<Expression, GpuDevice, false>::run(const Expression& expr, const GpuDevice& device)
|
EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, false>::run(const Expression& expr, const GpuDevice& device)
|
||||||
{
|
{
|
||||||
|
#ifndef __CUDA_ARCH__
|
||||||
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
|
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
|
||||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
||||||
if (needs_assign)
|
if (needs_assign)
|
||||||
@ -227,13 +228,17 @@ inline void TensorExecutor<Expression, GpuDevice, false>::run(const Expression&
|
|||||||
LAUNCH_CUDA_KERNEL((EigenMetaKernel_NonVectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
|
LAUNCH_CUDA_KERNEL((EigenMetaKernel_NonVectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
|
||||||
}
|
}
|
||||||
evaluator.cleanup();
|
evaluator.cleanup();
|
||||||
|
#else
|
||||||
|
eigen_assert(false && "Cannot launch a kernel from another kernel");
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/*static*/
|
/*static*/
|
||||||
template<typename Expression>
|
template<typename Expression>
|
||||||
inline void TensorExecutor<Expression, GpuDevice, true>::run(const Expression& expr, const GpuDevice& device)
|
EIGEN_DEVICE_FUNC inline void TensorExecutor<Expression, GpuDevice, true>::run(const Expression& expr, const GpuDevice& device)
|
||||||
{
|
{
|
||||||
|
#ifndef __CUDA_ARCH__
|
||||||
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
|
TensorEvaluator<Expression, GpuDevice> evaluator(expr, device);
|
||||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
||||||
if (needs_assign)
|
if (needs_assign)
|
||||||
@ -246,6 +251,9 @@ inline void TensorExecutor<Expression, GpuDevice, true>::run(const Expression& e
|
|||||||
LAUNCH_CUDA_KERNEL((EigenMetaKernel_Vectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
|
LAUNCH_CUDA_KERNEL((EigenMetaKernel_Vectorizable<TensorEvaluator<Expression, GpuDevice>, Index>), num_blocks, block_size, 0, device, evaluator, size);
|
||||||
}
|
}
|
||||||
evaluator.cleanup();
|
evaluator.cleanup();
|
||||||
|
#else
|
||||||
|
eigen_assert(false && "Cannot launch a kernel from another kernel");
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif // __CUDACC__
|
#endif // __CUDACC__
|
||||||
|
@ -454,7 +454,7 @@ struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType>, Device>
|
|||||||
input_strides[i] = input_strides[i + 1] * input_dims[i + 1];
|
input_strides[i] = input_strides[i + 1] * input_dims[i + 1];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
int outputIndex = 0;
|
int outputIndex = 0;
|
||||||
int reduceIndex = 0;
|
int reduceIndex = 0;
|
||||||
for (int i = 0; i < NumInputDims; ++i) {
|
for (int i = 0; i < NumInputDims; ++i) {
|
||||||
@ -473,13 +473,13 @@ struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType>, Device>
|
|||||||
m_preservedStrides[0] = internal::array_prod(input_dims);
|
m_preservedStrides[0] = internal::array_prod(input_dims);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||||
|
|
||||||
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
||||||
typedef typename internal::remove_const<typename XprType::PacketReturnType>::type PacketReturnType;
|
typedef typename internal::remove_const<typename XprType::PacketReturnType>::type PacketReturnType;
|
||||||
|
|
||||||
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
|
||||||
m_impl.evalSubExprsIfNeeded(NULL);
|
m_impl.evalSubExprsIfNeeded(NULL);
|
||||||
|
|
||||||
// Use the FullReducer if possible.
|
// Use the FullReducer if possible.
|
||||||
|
Loading…
x
Reference in New Issue
Block a user