diff --git a/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h b/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h index 91efdac68..8f7285203 100644 --- a/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +++ b/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h @@ -286,11 +286,6 @@ HybridNonLinearSolver::solveOneStep( /* accumulate the orthogonal factor in fjac. */ ei_qform(n, n, fjac.data(), fjac.rows(), wa1.data()); -#if 0 - std::cout << "ei_qform: " << fjac << std::endl; - fjac = qrfac.matrixQ(); - std::cout << "qrfac.matrixQ():" << fjac << std::endl; -#endif /* rescale if necessary. */ diff --git a/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h b/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h index 51beeb1be..b9e3c808e 100644 --- a/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +++ b/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h @@ -286,6 +286,13 @@ LevenbergMarquardt::minimizeOneStep( /* form (q transpose)*fvec and store the first n components in */ /* qtf. */ +#if 0 + // find a way to only compute the first n items, we have m>>n here. + wa4 = fvec; + wa4.applyOnTheLeft(qrfac.householderQ().adjoint()); + wa4 = wa4.head(n); + fjac.diagonal() = wa1; +#else wa4 = fvec; for (j = 0; j < n; ++j) { if (fjac(j,j) != 0.) { @@ -299,11 +306,6 @@ LevenbergMarquardt::minimizeOneStep( fjac(j,j) = wa1[j]; qtf[j] = wa4[j]; } - -#if 0 - std::cout << "qtf: " << qtf << std::endl; - FVectorType monqtf = qrfac.matrixQ().transpose() * fvec; - std::cout << "mon qtf :" << monqtf << std::endl; #endif /* compute the norm of the scaled gradient. */